Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The number of arbitrary constants in the general solutions of order n and n +1are respectively
विकल्प
n – 1, n
n, n + 1
n + 1, n + 2
n + 1, n
उत्तर
n, n + 1
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = sqrt((1 - y^2)/(1 - x^2)`
Solve the following differential equation:
`sin ("d"y)/("d"x)` = a, y(0) = 1
Solve the following differential equation:
(ey + 1)cos x dx + ey sin x dy = 0
Solve the following differential equation:
`("d"y)/("d"x) - xsqrt(25 - x^2)` = 0
Solve the following differential equation:
`tan y ("d"y)/("d"x) = cos(x + y) + cos(x - y)`
Solve the following differential equation:
`2xy"d"x + (x^2 + 2y^2)"d"y` = 0
Solve the following differential equation:
`x ("d"y)/("d"x) = y - xcos^2(y/x)`
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
Solve: `(1 + x^2)/(1 + y) = xy ("d"y)/("d"x)`
Solve: (1 – x) dy – (1 + y) dx = 0
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
Solve the following:
`("d"y)/("d"x) + y/x = x'e"^x`
Solve the following:
`("d"y)/("d"x) + y/x = x"e"^x`
Solve the following:
A bank pays interest by continuous compounding, that is by treating the interest rate as the instantaneous rate of change of principal. A man invests ₹ 1,00,000 in the bank deposit which accrues interest, 8% per year compounded continuously. How much will he get after 10 years? (e0.8 = 2.2255)
Choose the correct alternative:
If sec2 x is an integrating factor of the differential equation `("d"y)/("d"x) + "P"y` = Q then P =
Choose the correct alternative:
A homogeneous differential equation of the form `("d"y)/("d"x) = f(y/x)` can be solved by making substitution
Form the differential equation having for its general solution y = ax2 + bx
A manufacturing company has found that the cost C of operating and maintaining the equipment is related to the length ’m’ of intervals between overhauls by the equation `"m"^2 "dC"/"dm" + 2"mC"` = 2 and c = 4 and when = 2. Find the relationship between C and m