हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Consider a Circular Ring of Radius R, Uniformly Charged with Linear Charge Density λ. Find the Electric Potential at a Point on the Axis at a Distance X from the Centre of the Ring - Physics

Advertisements
Advertisements

प्रश्न

Consider a circular ring of radius r, uniformly charged with linear charge density λ. Find the electric potential at a point on the axis at a distance x from the centre of the ring. Using this expression for the potential, find the electric field at this point. 

संख्यात्मक

उत्तर

Given:
Radius of the ring = r
So, circumference = 2πr  
Charge density = λ,
Total charge, q = 2πr × λ
Distance of the point from the centre of the ring = x
Distance of the point from the surface of the ring, 

\[r' = \sqrt{r^2 + x^2}\]
Electricity potential,
\[V = \frac{1}{4\pi \epsilon_0}\frac{q}{r'}\]
\[\Rightarrow V = \frac{1}{4\pi \epsilon_0}\frac{2\pi r\lambda}{\sqrt{r^2 + x^2}}\]

\[\Rightarrow V = \frac{1}{2 \epsilon_0}\frac{r\lambda}{( r^2 + x^2 )^{1/2}}\]

Due to symmetry at point P, vertical component of electric field vanishes.
So, net electric field = Ecosθ

\[\Rightarrow E = \frac{r\lambda}{2 \epsilon_0 ( r^2 + x^2 )^{1/2}}\frac{x}{( r^2 + x^2 )}\]
\[ \Rightarrow E = \frac{r\lambda x}{2 \epsilon_0 ( r^2 + x^2 )^{3/2}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Electric Field and Potential - Exercises [पृष्ठ १२३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 7 Electric Field and Potential
Exercises | Q 63 | पृष्ठ १२३

संबंधित प्रश्न

(i) If two similar large plates, each of area A having surface charge densities +σ and –σ are separated by a distance d in air, find the expressions for

(a) field at points between the two plates and on outer side of the plates. Specify the direction of the field in each case.

(b) the potential difference between the plates.

(c) the capacitance of the capacitor so formed.

(ii) Two metallic spheres of Radii R and 2R are charged so that both of these have same surface charge density σ. If they are connected to each other with a conducting wire, inn which direction will the charge flow and why?


plot a graph showing the variation of current density (j) versus the electric field (E) for two conductors of different materials. What information from this plot regarding the properties of the conducting material, can be obtained which can be used to select suitable materials for use in making (i) standard resistance and (ii) connecting wires in electric circuits?


Plot a graph showing the variation of resistivity of a conductor with temperature.


Why is the potential inside a hollow spherical charged conductor constant and has the same value of as on its surface?


The electric field in a region is given by 

`vec"E"= 3/5"E"_0 vec"i" + 4/5 "E"_0 vec "i"  "with" " E"_0 = 2.0 xx 10^3 "N""C"^-1.` 

 Find the flux of this field through a rectangular surface of area 0⋅2 m2 parallel to the y-z plane.


The electric field in a region is given by `vec"E" = ("E"_0 "x")/"l"  vec"i".` 

Find the charge contained inside the cubical volume bound by the surfaces 

x =0, x =a, y=0, y=a, z=0 and z=a. Take

`"E"_0 = 5 xx 10^3 "N""C"^-1 , "l" =2 "cm" " and" " a" = 1 "cm" `


The radius of a gold nucleus (Z = 79) is about 7.0 × 10-10 m. Assume that the positive charge is distributed uniformly throughout the nuclear volume. Find the strength of the electric field at (a) the surface of the nucleus and (b) at the middle point of a radius. Remembering that gold is a conductor, is it justified to assume that the positive charge is uniformly distributed over the entire volume of the nucleus and does not come to the outer surface?


Consider the following very rough model of a beryllium atom. The nucleus has four protons and four neutrons confined to a small volume of radius 10−15 m. The two 1 selectrons make a spherical charge cloud at an average distance of 1⋅3 ×10−11 m from the nucleus, whereas the two 2 s electrons make another spherical cloud at an average distance of 5⋅2 × 10−11 m from the nucleus. Find three electric fields at (a) a point just inside the 1 s cloud and (b) a point just inside the 2 s cloud.


Find the magnitude of the electric field at a point 4 cm away from a line charge of density 2 × 10-6 Cm-1.


A non-conducting sheet of large surface area and thickness d contains a uniform charge distribution of density ρ. Find the electric field at a point P inside the plate, at a distance x from the central plane. Draw a qualitative graph of E against x for 0 < x < d.


A charged particle with a charge of −2⋅0 × 10−6 C is placed close to a non-conducting plate with a surface charge density of 4.0 × 10-6Cm0-2. Find the force of attraction between the particle and the plate.


Three identical metal plates with large surface areas are kept parallel to each other as shown in the following figure. The leftmost plate is given a charge Q, the rightmost a charge −2Q and the middle one is kept neutral. Find the charge appearing on the outer surface of the rightmost plate.


A uniform electric field of 10 N C−1 exists in the vertically downward direction. Find the increase in the electric potential as one goes up through a height of 50 cm.


Some equipotential surface is shown in the figure. What can you say about the magnitude and the direction of the electric field? 


A uniform field of 2.0 NC−1 exists in space in the x-direction. (a) Taking the potential at the origin to be zero, write an expression for the potential at a general point (x, y, z). (b) At which point, the potential is 25 V? (c) If the potential at the origin is taken to be 100 V, what will be the expression for the potential at a general point? (d) What will be the potential at the origin if the potential at infinity is taken to be zero? Is it practical to choose the potential at infinity to be zero?  


Answer the following question.
Prove that the average energy density of the oscillating electric field is equal to that of the oscillating magnetic field.


On charging by conduction, mass of a body may ______.

When a comb rubbed with dry hair attracts pieces of paper. This is because the ______.


Pick out the statement which is incorrect


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×