हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Consider the Situation of the Previous Problem. a Particle Having Charge Q And Mass Mis Projected from the Point Q In a Direction Going into the Plane of the Diagram. - Physics

Advertisements
Advertisements

प्रश्न

Consider the situation of the previous problem. A particle having charge q and mass mis projected from the point Q in a direction going into the plane of the diagram. It is found to describe a circle of radius r between the two plates. Find the speed of the charged particle.

टिप्पणी लिखिए

उत्तर

Given: 
Charge = q
Mass = m
Radius = r
We know that the radius described by a charged particle in a magnetic field is given by

`r = (mv) /(qB)`

Using Ampere circuital law 

`int B .dl = mu_0i`

`⇒ B. dl = mu _0 kdl ` 

`⇒ B  = mu_0 k`

`⇒ v =(Bqr)/m = (mu_0kqr)/m`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Magnetic Field due to a Current - Exercises [पृष्ठ २५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 13 Magnetic Field due to a Current
Exercises | Q 53 | पृष्ठ २५२

संबंधित प्रश्न

State Ampere’s circuital law.


Explain Ampere’s circuital law.


Using Ampere’s circuital law, obtain the expression for the magnetic field due to a long solenoid at a point inside the solenoid on its axis ?


A hollow tube is carrying an electric current along its length distributed uniformly over its surface. The magnetic field
(a) increases linearly from the axis to the surface
(b) is constant inside the tube
(c) is zero at the axis
(d) is zero just outside the tube.


In a coaxial, straight cable, the central conductor and the outer conductor carry equal currents in opposite directions. The magnetic field is zero
(a) outside the cable
(b) inside the inner conductor
(c) inside the outer conductor
(d) in between the tow conductors.


Consider the situation described in the previous problem. Suppose the current i enters the loop at the points A and leaves it at the point B. Find the magnetic field at the centre of the loop. 


A long, cylindrical wire of radius b carries a current i distributed uniformly over its cross section. Find the magnitude of the magnetic field at a point inside the wire at a distance a from the axis.  


What is magnetic permeability?


Define ampere.


Calculate the magnetic field inside and outside of the long solenoid using Ampere’s circuital law


Ampere’s circuital law is equivalent to ______.

The magnetic field around a long straight current carrying wire is ______.

The force required to double the length of a steel wire of area 1 cm2, if it's Young's modulus Y = `2 xx 10^11/m^2` is:


Two identical current carrying coaxial loops, carry current I in an opposite sense. A simple amperian loop passes through both of them once. Calling the loop as C ______.

  1. `oint B.dl = +- 2μ_0I`
  2. the value of `oint B.dl` is independent of sense of C.
  3. there may be a point on C where B and dl are perpendicular.
  4. B vanishes everywhere on C.

Two concentric and coplanar circular loops P and Q have their radii in the ratio 2:3. Loop Q carries a current 9 A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry ______.


Read the following paragraph and answer the questions.

Consider the experimental set-up shown in the figure. This jumping ring experiment is an outstanding demonstration of some simple laws of Physics. A conducting non-magnetic ring is placed over the vertical core of a solenoid. When current is passed through the solenoid, the ring is thrown off.

  1. Explain the reason for the jumping of the ring when the switch is closed in the circuit.
  2. What will happen if the terminals of the battery are reversed and the switch is closed? Explain.
  3. Explain the two laws that help us understand this phenomenon.

The given figure shows a long straight wire of a circular cross-section (radius a) carrying steady current I. The current I is uniformly distributed across this cross-section. Calculate the magnetic field in the region r < a and r > a.

 


Briefly explain various ways to increase the strength of the magnetic field produced by a given solenoid.


Using Ampere’s circuital law, obtain an expression for magnetic flux density ‘B’ at a point near an infinitely long and straight conductor, carrying a current I.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×