हिंदी

Explain the change in internal energy of a thermodynamic system (the gas) by heating it. - Physics

Advertisements
Advertisements

प्रश्न

Explain the change in internal energy of a thermodynamic system (the gas) by heating it.

स्पष्ट कीजिए

उत्तर

Consider a gas filled in a cylinder fitted with a massless, movable, and frictionless piston as shown in the figure.

Let Ts be the temperature of gas (system),

TE be temperature of environment.

Initially, the cylinder is heated using a burner, as illustrated in the picture. At this level, TE exceeds Ts. The temperature difference between the source of heat and the system causes energy to flow towards the gas in the cylinder. This increases the gas's internal energy. When the environment is cooler than the gas, Ts > TE, resulting in energy transfer from the gas to the surroundings.

The gas expands as a result of the piston being forced out during this procedure. The gas does a certain amount of work. The gas cools, and some of its energy is lost. This describes how exerting effort can alter a gas's intrinsic energy.

shaalaa.com
Heat, Internal Energy and Work
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Official

संबंधित प्रश्न

Explain why Two bodies at different temperatures T1 and T2, if brought in thermal contact, do not necessarily settle to the mean temperature (T1 + T2)/2.


In changing the state of a gas adiabatically from an equilibrium state to another equilibrium state B, an amount of work equal to 22.3 J is done on the system. If the gas is taken from state to via a process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case? (Take 1 cal = 4.19 J)


A cylinder containing a gas is lifted from the first floor to the second floor. What is the amount of work done on the gas? What is the amount of work done by the gas? Is the internal energy of the gas increased? Is the temperature of the gas increased?


The outer surface of a cylinder containing a gas is rubbed vigorously by a polishing machine. The cylinder and its gas become warm. Is the energy transferred to the gas heat or work?


The final volume of a system is equal to the initial volume in a certain process. Is the work done by the system necessarily zero? Is it necessarily nonzero?


When a tyre bursts, the air coming out is cooler than the surrounding air. Explain.


Refer to figure. Let ∆U1 and ∆U2 be the changes in internal energy of the system in the process A and B. Then _____________ .


An ideal gas goes from the state i to the state f as shown in figure. The work done by the gas during the process ______________ .


A gas is contained in a metallic cylinder fitted with a piston. The piston is suddenly moved in to compress the gas and is maintained at this position. As time passes the pressure of the gas in the cylinder ______________ .


Figure shows three paths through which a gas can be taken from the state A to the state B. Calculate the work done by the gas in each of the three paths.


A mixture of fuel and oxygen is burned in a constant-volume chamber surrounded by a water bath. It was noticed that the temperature of water is increased during the process. Treating the mixture of fuel and oxygen as the system,

  1. Has heat been transferred?
  2. Has work been done?
  3. What is the sign of ∆U?

Which of the following is correct, when the energy is transferred to a system from its environment?


When does a system lose energy to its surroundings and its internal energy decreases? 


A system releases 100 kJ of heat while 80 kJ of work is done on the system. Calculate the change in internal energy.


Explain given cases related to energy transfer between the system and surrounding –

  1. energy transferred (Q) > 0
  2. energy transferred (Q) < 0
  3. energy transferred (Q) = 0 

One gram of water (1 cm3) becomes 1671 cm3 of steam at a pressure of 1 atm. The latent heat of vaporization at this pressure is 2256 J/g. Calculate the external work and the increase in internal energy. 


The internal energy of a system is ______


A thermodynamic system goes from states

(i) P, V to 2P, V  (ii) P, V to P, 2V

The work done in the two cases is ____________.


An ideal gas is compressed at a constant temperature. Its internal energy will ____________.


8 m3 of a gas is heated at the pressure 105 N/m2 until its volume increases by 10%. Then, the external work done by the gas is ____________.


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the final pressure of the gas in A and B?


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the change in internal energy of the gas?


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the change in the temperature of the gas?


n mole of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes:

A `→` B: Isothermal expansion at temperature T so that the volume is doubled from V1 to V2 = 2V1 and pressure changes from P1 to P2.

B `→` C: Isobaric compression at pressure P2 to initial volume V1.

C `→` A: Isochoric change leading to change of pressure from P2 to P1.

Total workdone in the complete cycle ABCA is ______.


A gas is compressed at a constant pressure of 50 N/m2 from a volume of 10 m3 to a volume of 4 m3. Energy of 100 J is then added to the gas by heating. Its internal energy is ______.


What is heat?


A system releases 125 kJ of heat while 104 kJ work is done on the system. Calculate the change in internal energy.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×