English

Explain the change in internal energy of a thermodynamic system (the gas) by heating it. - Physics

Advertisements
Advertisements

Question

Explain the change in internal energy of a thermodynamic system (the gas) by heating it.

Explain

Solution

Consider a gas filled in a cylinder fitted with a massless, movable, and frictionless piston as shown in the figure.

Let Ts be the temperature of gas (system),

TE be temperature of environment.

Initially, the cylinder is heated using a burner, as illustrated in the picture. At this level, TE exceeds Ts. The temperature difference between the source of heat and the system causes energy to flow towards the gas in the cylinder. This increases the gas's internal energy. When the environment is cooler than the gas, Ts > TE, resulting in energy transfer from the gas to the surroundings.

The gas expands as a result of the piston being forced out during this procedure. The gas does a certain amount of work. The gas cools, and some of its energy is lost. This describes how exerting effort can alter a gas's intrinsic energy.

shaalaa.com
Heat, Internal Energy and Work
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

Explain why Two bodies at different temperatures T1 and T2, if brought in thermal contact, do not necessarily settle to the mean temperature (T1 + T2)/2.


A steam engine delivers 5.4×10J of work per minute and services 3.6 × 10J of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute?


Should the internal energy of a system necessarily increase if heat is added to it?


The outer surface of a cylinder containing a gas is rubbed vigorously by a polishing machine. The cylinder and its gas become warm. Is the energy transferred to the gas heat or work?


The final volume of a system is equal to the initial volume in a certain process. Is the work done by the system necessarily zero? Is it necessarily nonzero?


An ideal gas is pumped into a rigid container having diathermic walls so that the temperature remains constant. In a certain time interval, the pressure in the container is doubled. Is the internal energy of the contents of the container also doubled in the interval ?


An ideal gas goes from the state i to the state f as shown in figure. The work done by the gas during the process ______________ .


The pressure p and volume V of an ideal gas both increase in a process.

(a) Such a process is not possible.

(b) The work done by the system is positive.

(c) The temperature of the system must increase.

(d) Heat supplied to the gas is equal to the change in internal energy.


A 100 kg lock is started with a speed of 2.0 m s−1 on a long, rough belt kept fixed in a horizontal position. The coefficient of kinetic friction between the block and the belt is 0.20. (a) Calculate the change in the internal energy of the block-belt system as the block comes to a stop on the belt. (b) Consider the situation from a frame of reference moving at 2.0 m s−1 along the initial velocity of the block. As seen from this frame, the block is gently put on a moving belt and in due time the block starts moving with the belt at 2.0 m s−1. calculate the increase in the kinetic energy of the block as it stops slipping  past the belt. (c) Find the work done in this frame by the external force holding the belt.


A gas is taken along the path AB as shown in figure. If 70 cal of heat is extracted from the gas in the process, calculate the change in the internal energy of the system.


A gas is initially at a pressure of 100 kPa and its volume is 2.0 m3. Its pressure is kept constant and the volume is changed from 2.0 m3 to 2.5 m3. Its Volume is now kept constant and the pressure is increased from 100 kPa to 200 kPa. The gas is brought back to its initial state, the pressure varying linearly with its volume. (a) Whether the heat is supplied to or extracted from the gas in the complete cycle? (b) How much heat was supplied or extracted?


A system releases 130 kJ of heat while 109 kJ of work is done on the system. Calculate the change in internal energy.


Which of the following is correct, when the energy is transferred to a system from its environment?


What is the internal energy of the system, when the amount of heat Q is added to the system and the system does not do any work during the process?


A system releases 100 kJ of heat while 80 kJ of work is done on the system. Calculate the change in internal energy.


Explain given cases related to energy transfer between the system and surrounding –

  1. energy transferred (Q) > 0
  2. energy transferred (Q) < 0
  3. energy transferred (Q) = 0 

derive the relation between the change in internal energy (∆U), work is done (W), and heat (Q). 


The internal energy of a system is ______


Two samples A and B, of a gas at the same initial temperature and pressure are compressed from volume V to V/2; A isothermally and B adiabatically. The final pressure of A will be ______.


Which of the following represents isothermal process?


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the change in the temperature of the gas?


Figure shows the P-V diagram of an ideal gas undergoing a change of state from A to B. Four different parts I, II, III and IV as shown in the figure may lead to the same change of state.

  1. Change in internal energy is same in IV and III cases, but not in I and II.
  2. Change in internal energy is same in all the four cases.
  3. Work done is maximum in case I
  4. Work done is minimum in case II.

A person of mass 60 kg wants to lose 5kg by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1 kg of fat is burnt on expending 7000 kilo calories, how many times must he go up and down to reduce his weight by 5 kg?


n mole of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes:

A `→` B: Isothermal expansion at temperature T so that the volume is doubled from V1 to V2 = 2V1 and pressure changes from P1 to P2.

B `→` C: Isobaric compression at pressure P2 to initial volume V1.

C `→` A: Isochoric change leading to change of pressure from P2 to P1.

Total workdone in the complete cycle ABCA is ______.


In thermodynamics, heat and work are ______.


A cyclic process ABCA is shown in the V-T diagram. A process on the P-V diagram is ______.

 


What is heat?


A system releases 125 kJ of heat while 104 kJ work is done on the system. Calculate the change in internal energy.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×