English

Which of the following is correct, when the energy is transferred to a system from its environment? - Physics

Advertisements
Advertisements

Question

Which of the following is correct, when the energy is transferred to a system from its environment?

Options

  • System gains energy

  • System loses energy

  • System releases energy

  • the system does not exchange energy

MCQ

Solution

System gains energy

shaalaa.com
Heat, Internal Energy and Work
  Is there an error in this question or solution?
Chapter 4: Thermodynamics - MCQ’s

RELATED QUESTIONS

Explain why Air pressure in a car tyre increases during driving.


Should the internal energy of a system necessarily increase if heat is added to it?


A force F is applied on a block of mass M. The block is displaced through a distance d in the direction of the force. What is the work done by the force on the block? Does the internal energy change because of this work?


When we rub our hands they become warm. Have we supplied heat to the hands?


Consider the process on a system shown in figure. During the process, the work done by the system ______________ .


Consider the following two statements.

(A) If heat is added to a system, its temperature must increase.

(B) If positive work is done by a system in a thermodynamic process, its volume must increase.


An ideal gas goes from the state i to the state f as shown in figure. The work done by the gas during the process ______________ .


The pressure p and volume V of an ideal gas both increase in a process.

(a) Such a process is not possible.

(b) The work done by the system is positive.

(c) The temperature of the system must increase.

(d) Heat supplied to the gas is equal to the change in internal energy.


A substance is taken through the process abc as shown in figure. If the internal energy of the substance increases by 5000 J and a heat of 2625 cal is given to the system, calculate the value of J.


A gas is initially at a pressure of 100 kPa and its volume is 2.0 m3. Its pressure is kept constant and the volume is changed from 2.0 m3 to 2.5 m3. Its Volume is now kept constant and the pressure is increased from 100 kPa to 200 kPa. The gas is brought back to its initial state, the pressure varying linearly with its volume. (a) Whether the heat is supplied to or extracted from the gas in the complete cycle? (b) How much heat was supplied or extracted?


What is the internal energy of the system, when the amount of heat Q is added to the system and the system does not do any work during the process?


When does a system lose energy to its surroundings and its internal energy decreases? 


A system releases 100 kJ of heat while 80 kJ of work is done on the system. Calculate the change in internal energy.


derive the relation between the change in internal energy (∆U), work is done (W), and heat (Q). 


The internal energy of a system is ______


When 1 g of water at 0° C and 1 x 105 N/m2 pressure is converted into ice of volume 1.082 cm3, the external work done will be ____________.


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the change in the temperature of the gas?


Figure shows the P-V diagram of an ideal gas undergoing a change of state from A to B. Four different parts I, II, III and IV as shown in the figure may lead to the same change of state.

  1. Change in internal energy is same in IV and III cases, but not in I and II.
  2. Change in internal energy is same in all the four cases.
  3. Work done is maximum in case I
  4. Work done is minimum in case II.

A person of mass 60 kg wants to lose 5kg by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1 kg of fat is burnt on expending 7000 kilo calories, how many times must he go up and down to reduce his weight by 5 kg?


n mole of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes:

A `→` B: Isothermal expansion at temperature T so that the volume is doubled from V1 to V2 = 2V1 and pressure changes from P1 to P2.

B `→` C: Isobaric compression at pressure P2 to initial volume V1.

C `→` A: Isochoric change leading to change of pressure from P2 to P1.

Total workdone in the complete cycle ABCA is ______.


In thermodynamics, heat and work are ______.


If a gas is compressed adiabatically:


The internal energy of one mole of argon is ______.


A system releases 125 kJ of heat while 104 kJ work is done on the system. Calculate the change in internal energy.


Explain the change in internal energy of a thermodynamic system (the gas) by heating it.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×