हिंदी

Figure shown a two slit arrangement with a source which emits unpolarised light. P is a polariser with axis whose direction is not given. If I0 is the intensity of the principal - Physics

Advertisements
Advertisements

प्रश्न

Figure shown a two slit arrangement with a source which emits unpolarised light. P is a polariser with axis whose direction is not given. If I0 is the intensity of the principal maxima when no polariser is present, calculate in the present case, the intensity of the principal maxima as well as of the first minima.

दीर्घउत्तर

उत्तर

The resultant amplitude of wave reaching the screen will be the sum of amplitude of either wave in perpendicular and parallel polarisation.

Amplitude of the wave in perpendicular polarisation

`A_⊥ = A_⊥^1 + A_⊥^2 = A_⊥^0 sin (kx - ωt) + A_⊥^0 sin (kx - ωt + phi)`

⇒ `A_⊥ = A_⊥^0 (sin (kx - ωt) + sin (kx - ωt + phi)`

Amplitude of the wave in parallel polarisation

`A_(||) = A_(||)^((1)) + A_(||)^((2))`

⇒ `A_(||) = A_(||)^0 [sin (kx - ωt) + sin (kx - ωt + phi)]`

∴ Average Intensity on the screen

`I = {|A_⊥^0|^2 + |A_(||)^0|^2} [sin^2 (kx - ωt)(1 + cos^2 phi + 2 sin phi) + sin^2 (kx - ωt) sin^2 phi]_("average")`

= `{|A_⊥^0|^2 + |A_(||)^0|^2}(1/2)*2(1 + cos phi)`

⇒ `I = 2|A_⊥^0|^2 (1 + cos phi)` since, `|A_⊥^0|_("av") = |A_(||)^0|_("av")`

With polariser P,

Assume `A_⊥^2` is blocked

Intensity = `(A_(||)^1 + A_(||)^2)^2 + (A_⊥^1)^2`

= `|A_⊥^2|^2 (1 + cos phi) + |A_⊥^0|^2 * 1/2`

Given, `I_0 4|A_⊥^0|^2` = Intensity without polariser at principal maxima.

Intensity at first minima with polariser = `|A_⊥^0|^2 (1 - 1) + (|A_⊥^0|^2)/2 = I_0/8`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Wave Optics - MCQ I [पृष्ठ ६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 12
अध्याय 10 Wave Optics
MCQ I | Q 10.19 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [3]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×