हिंदी

From the Top of a Light House, an Abserver Looking at a Boat Makes an Angle of Depression of 600. If the Height of the Lighthouse is 90 M Then Find How Far is the Boat from the Lighthouse. (3 = 1.73) - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

From the top of a light house, an abserver looking at a boat makes an angle of depression of 600. If the height of the lighthouse is 90 m then find how far is the boat from the lighthouse. (3 = 1.73)

उत्तर

Let AB be the light house.
The boat is at C and observer is at A.
∠ MAC is the angle of depression.
∠ MAC = ∠ ACB = 60° .....(Alternate angle)
AB = 90 m.
From the figure, tan60° `= (AB)/(BC)`
`sqrt3 = (90)/(BC)`
`BC = (90)/(sqrt3) = (90 xx sqrt3)/(sqrt3 xxsqrt3) = (90sqrt3)/3 = 30sqrt3`
∴ BC = 30 × 1.73
∴ BC = 51.90
∴ The boat is at a distance of 51.90m from the light house.

shaalaa.com
Property of an Angle Bisector of a Triangle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) Balbharati Model Question Paper Set 3

संबंधित प्रश्न

Given below is the triangle and length of line segments. Identify in the given figure, ray PM is the bisector of ∠QPR.


In ∆MNP, NQ is a bisector of ∠N. If MN = 5, PN = 7 MQ = 2.5 then find QP. 


Measures of some angles in the figure are given. Prove that `"AP"/"PB" = "AQ"/"QC"`.


Find QP using given information in the figure.


In the given figure, if AB || CD || FE then find x and AE. 


In ∆PQR seg PM is a median. Angle bisectors of ∠PMQ and ∠PMR intersect side PQ and side PR in points X and Y respectively. Prove that XY || QR. 


Complete the proof by filling in the boxes.

In △PMQ, ray MX is bisector of ∠PMQ.

∴ `square/square = square/square` .......... (I) theorem of angle bisector.

In △PMR, ray MY is bisector of ∠PMQ.

∴ `square/square = square/square` .......... (II) theorem of angle bisector.

But `(MP)/(MQ) = (MP)/(MR)` .......... M is the midpoint QR, hence MQ = MR.

∴ `(PX)/(XQ) = (PY)/(YR)`

∴ XY || QR .......... converse of basic proportionality theorem.


In the given fig, bisectors of ∠B and ∠C of ∆ABC intersect each other in point X. Line AX intersects side BC in point Y. AB = 5, AC = 4, BC = 6 then find `"AX"/"XY"`.


In ▢ABCD, seg AD || seg BC. Diagonal AC and diagonal BD intersect each other in point P. Then show that `"AP"/"PD" = "PC"/"BP"`.


Seg NQ is the bisector of ∠ N
of Δ MNP. If MN= 5, PN =7,
MQ = 2.5 then find QP.


In the figure, ray YM is the bisector of ∠XYZ, where seg XY ≅ seg YZ, find the relation between XM and MZ. 


Draw seg AB = 6.8 cm and draw perpendicular bisector of it. 


In the following figure, ray PT is the bisector of QPR Find the value of x and perimeter of QPR.


Draw the circumcircle of ΔPMT in which PM = 5.6 cm, ∠P = 60°, ∠M = 70°.


If ΔABC ∼ ΔDEF such that ∠A = 92° and ∠B = 40°, then ∠F = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×