Advertisements
Advertisements
प्रश्न
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
प्रत्येक प्राकृत संख्या n ≥ 2 के लिए, n3 − n, संख्या 6 से भाज्य है।
उत्तर
मान लो की, P(n) : n3 − n प्राकृतिक संख्या n > 2 के लिए 6 से विभाज्य होने दें।,
आइए हम मान लें कि P(n) कुछ प्राकृतिक n = k संख्या के लिए यह सही है।
P(k) : K3 – k को 6 से विभाज्य होने दें।
अथवा k3 − k = 6m, m ∈ N ........(i)
साबित करो, P(k + 1) सत्य है।
P(k + 1) : (k + 1)3 − (k + 1)
= k3 + 1 + 3k(k + 1) − (k + 1)
= k3 + 1 + 3k2 + 3k − k − 1
= (k3 − k) + 3k(k + 1)
= 6m + 3k(k + 1) ........(using (i))
जो 6 से विभाज्य है। (∴ k(k + 1) सम है)
इस प्रकार, जहाँ भी P(k + 1) सत्य है वह P(k) सत्य है।
इसलिए, गणितीय प्रेरण के सिद्धांत से सभी प्राकृतिक संख्याओं n ≥ 2 के लिए P(n) सही है।
APPEARS IN
संबंधित प्रश्न
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/4`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + ...+ 1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`
32n+2 – 8n- 9, संख्या 8 से भाज्य है।
(2n + 7) < (n+ 3)2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
1 + 3 + 5 + ... + (2n – 1) = n2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
22n - 1 संख्या 3 से भाज्य है।
गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1
बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।
उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि
`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`
अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
एक ऐसे कथन P(n) का उदाहरण दीजिए, जो सभी n ≥ 4 के लिए सत्य है किंतु P(1), P(2) तथा P(3) सत्य नहीं है। अपने उत्तर का औचित्य भी बताइए।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
प्रत्येक प्राकृत संख्या n के लिए, 4n − 1 संख्या 3 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 23n − 1, संख्या 7 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए 32n − 1 संख्या 8 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 2n < (n + 2)!
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 1 + 5 + 9 + ... + (4n − 3) = n(2n − 1)
सभी प्राकृत संख्या k के लिए एक अनुक्रम b0, b1, b2 ...., b0 = 5 तथा bk = 4 + bk − 1 द्वारा परिभाषित है। गणितीय आगमन के प्रयोग द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए bn = 5 + 4n.
सभी प्राकृत संख्या k ≥ 2 के लिए अनुक्रम d1, d2, d3 ..., d1 = 2 तथा `d_k = (d_{k - 1})/k` द्वारा परिभाषित है। सिद्ध कीजिए कि सभी n ∈ N के लिए, `d_n = 2/(n!)`.
सभी n ∈ N के लिए, सिद्ध कीजिए कि, cosθ cos2θ cos22θ ... cos2n−1θ = `(sin2^nθ)/(2^nsinθ)`.
सभी n ∈ N के लिए, सिद्ध कीजिए कि n भिन्न-भिन्न distinct अवयव वाले (अंतर्विष्ट किए हुए) समुच्चय के उपसमुच्चयों की संख्या 2n है।
यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान ______।
यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है: