Advertisements
Advertisements
प्रश्न
ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए:
निम्न अवरोधों के अंतर्गत Z = 5x + 3y का अधिकतमीकरण कीजिए:
3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0
उत्तर
बाधाओं की प्रणाली इस प्रकार है:
3x + 5y ≤ 15 ....(i)
5x + 2y ≤ 10 ...(ii)
और x ≥ 0, y ≥ 0 ...(iii)
माना l1: 3x + 5y = 15
l2: 5x + 2y = 10
चित्र में छायांकित क्षेत्र बाधाओं (i) से (iii) की प्रणाली द्वारा निर्धारित व्यवहार्य क्षेत्र है।
यह देखा गया है कि सुसंगत क्षेत्र OCEB परिबद्ध है।
इस प्रकार, हम Z का अधिकतम मान निर्धारित करने के लिए कोना बिंदु विधि का उपयोग करते हैं।
हमारे पास है: Z = 5x + 3x
O,C.E और B के निर्देशांक (0, 0) (2, 0), `(20/19, 45/19)` हैं।
(क्रमशः 3x + 5y = 15, 5x + 2y = 10) और (0, 3) को हल करने पर।
बिंदु | Z के संगत मान |
(2, 0) | 10 |
`(20/19, 45/19)` | `235/19` (अधिकतम) |
(0, 3) | 9 |
(0, 0) | 0 |
अत:, Z = अधिकतम `235/19 "पर" (20/19, 45/19)`
APPEARS IN
संबंधित प्रश्न
ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए:
निम्न अवरोधों के अंतर्गत Z = 3x + 5y का न्यूनतमीकरण कीजिए:
x + 3y ≥ 3, x + y ≥ 2, x, y ≥ 0
ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए:
निम्न अवरोधों के अंतर्गत Z = 3x + 2y का न्यूनतमीकरण कीजिए:
x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0
ग्राफ़ीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए:
निम्न अवरोधों के अंतर्गत Z = x + 2y का न्यूनतमीकरण कीजिए:
2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0
दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।
निम्न अवरोधों के अंतर्गत Z = 5x + 10y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए:
x + 2y ≤ 120, x + y ≥ 60, x - 2y ≥ 0, x, y ≥ 0.
दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।
निम्न अवरोधों के अंतर्गत Z = x + 2y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए:
x + 2y ≥ 100, 2x - y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.
दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।
निम्न अवरोधों के अंतर्गत Z = -x + 2y का अधिकतमीकरण कीजिए:
x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0.
दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।
निम्न अवरोधों के अंतर्गत Z = x + y का अधिकतमीकरण कीजिए:
x - y ≤ -1, -x + y ≤ 0, x, y ≥ 0.