हिंदी

If the length of an arc of a circle of radius r is equal to that of an arc of a circle of radius 2r, then the angle of the corresponding sector of the first circle is double - Mathematics

Advertisements
Advertisements

प्रश्न

If the length of an arc of a circle of radius r is equal to that of an arc of a circle of radius 2r, then the angle of the corresponding sector of the first circle is double the angle of the corresponding sector of the other circle. Is this statement false? Why?

योग

उत्तर

Let two circles C1 and C2 of radius r and 2r with centres O and O’, respectively.

It is given that, the arc length `hat("AB")` of C1 is equal to arc length `hat("CD")` of C2

i.e., `hat("AB") = hat("CD") = l`  ...(say)

Now, let θ1 be the angle subtended by arc `hat("AB")` and θ2 be the angle subtended by arc `hat("CD")` at the centre.

∴ `hat("AB") = l = θ_1/360^circ xx 2π"r"`   ...(i)

And `hat("CD") = l = θ_2/360^circ xx 2π (2"r")`

= `θ_2/360^circ xx 4π"r"`  ...(ii)


From (i) and (ii), we get

`θ_1/360^circ xx 2π"r" = θ_2/360^circ xx 4π"r"`

⇒ θ1 = 2θ2

 i.e., Angle of the corresponding sector of C1 is double the angle of the corresponding sector of C2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Area Related To Circles - Exercise 11.2 [पृष्ठ १२३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 11 Area Related To Circles
Exercise 11.2 | Q 8 | पृष्ठ १२३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×