हिंदी

In ΔABC, AD is the perpendicular bisector of BC (see the given figure). Show that ΔABC is an isosceles triangle in which AB = AC. - Mathematics

Advertisements
Advertisements

प्रश्न

In ΔABC, AD is the perpendicular bisector of BC (see the given figure). Show that ΔABC is an isosceles triangle in which AB = AC.

योग

उत्तर

Since AD is the bisector of BC.

∴ BD = CD

Now, in △ABD and △ACD, we have

AD = DA           ...[Common]

∠ADB = ∠ADC     ...[Each 90°]

BD = CD             ...[Proved above]

∴ △ABD ≌ △ACD       ...[By SAS congruence]

⇒ AB = AC         ...[By Corresponding parts of congruent triangles]

Thus, △ABC is an isosceles triangle.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.2 [पृष्ठ १२३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 7 Triangles
Exercise 7.2 | Q 2 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×