हिंदी

In an isosceles triangle ABC, with AB = AC, the bisectors of ∠B and ∠C intersect each other at O. Join A to O. Show that: i. OB = OC ii. AO bisects ∠A - Mathematics

Advertisements
Advertisements

प्रश्न

In an isosceles triangle ABC, with AB = AC, the bisectors of ∠B and ∠C intersect each other at O. Join A to O. Show that:

  1. OB = OC
  2. AO bisects ∠A
योग

उत्तर

(i) ABC is an isosceles triangle in which AB = AC

∠C = ∠B    ...[Angles opposite to equal sides in a triangle are equal.]

⇒ ∠OCA + ∠OCB = ∠OBA + ∠OBC

⇒ ∠OCB + ∠OCB = ∠OBC + ∠OBC

∵ OB bisects ∠B.

∴ ∠OBA = ∠OBC

And OC bisects ∠C.

∴ ∠OCA = ∠OCB

⇒ 2∠OCB = 2∠OBC

⇒ ∠OCB = ∠OBC

Now, in △OBC,

∠OCB = ∠OBC       ...[Proved above]

∴ OB = OC             ...[Sides opposite to equal angles]

(ii) Now, in △AOB and △AOC,

AB = AC      ...[Given]

∠OBA = ∠OCA

∠B = ∠C

BO bisects ∠B and CO bisects ∠C.

∠OBA = ∠OCA

OB = OC

∴ △AOB ≌ △AOC      ...[By SAS congruence rule]

⇒ ∠OAB = ∠OAC       ...[Corresponding parts of congruent triangles]

So, AO bisects ∠A.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.2 [पृष्ठ १२३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 7 Triangles
Exercise 7.2 | Q 1 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×