हिंदी

In a Abc , Ad is a Median and Al ⊥ Bc . - Mathematics

Advertisements
Advertisements

प्रश्न

In a ABC , AD is a median and AL ⊥ BC .  

  

Prove that 

(a) `AC^2=AD^2+BC  DL+((BC)/2)^2` 

(b) `AB^2=AD^2-BC  DL+((BC)/2)^2` 

(c) `AC^2+AB^2=2.AD^2+1/2BC^2` 

 

उत्तर १

(a) In right triangle ALD
Using Pythagoras theorem, we have 

`=AC^2-AL^2+LC^2` 

`=AD^2-DL^2+(DL+DC)^2 `        [Using (1)] 

=`AD^2-DL^2+(DL+(BC)/2)^2`                [∵ AD is a median] 

`=AD^2-DL^2+DL^2+((BC)/2)^2+BC.DL ` 

∴` AC^2=AD^2+BC.DL+((BC)/2)^2`             .................(2) 

(b) In right triangle ALD
Using Pythagoras theorem, we have 

`AL^2=AD^2-DL^2`           ....................(3)  

Again, In right triangle ABL
Using Pythagoras theorem, we have 

`AB^2=AL^2+LB^2` 

`=AD^2-DL^2+LB^2`            [𝑈𝑠𝑖𝑛𝑔 (3)] 

 

shaalaa.com

उत्तर २

(a) In right triangle ALD
Using Pythagoras theorem, we have 

`=AC^2-AL^2+LC^2` 

`=AD^2-DL^2+(DL+DC)^2 `        [Using (1)] 

=`AD^2-DL^2+(DL+(BC)/2)^2`                [∵ AD is a median] 

`=AD^2-DL^2+DL^2+((BC)/2)^2+BC.DL ` 

∴` AC^2=AD^2+BC.DL+((BC)/2)^2`             .................(2) 

(b) In right triangle ALD
Using Pythagoras theorem, we have 

`AL^2=AD^2-DL^2`           ....................(3)  

Again, In right triangle ABL
Using Pythagoras theorem, we have 

`AB^2=AL^2+LB^2` 

`=AD^2-DL^2+LB^2`            [𝑈𝑠𝑖𝑛𝑔 (3)]  

=`AD^2-DL^2+(BD-DL)^2` 

=`AD^2DL^2+(1/2BC-DL)^2` 

=`AD^2-DL^2+((BC)/2)^2-BC.DL+DL^2` 

∴ AB^2=AD^2-BC.DL+((BC)/2)^2       .............(4) 

(c) Adding (2) and (4), we get, 

=`AC^2+AB^2=AD^2+BC.DL+((BC)/2)^2+AD^2-BC.DL+((BC)/2)^2` 

=`2AD^2+(BC^2)/4+(BC^2)/4`  

=`2AD^2+(BC^2)/4+(BC^2)/4` 

=`2AD^2+1/2BC^2` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Triangles - Exercises 4

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 4 Triangles
Exercises 4 | Q 21

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In the given figure, D is a point on side BC of ΔABC such that ∠ADC=∠BAC . Prove that AD is the bisector of ∠BAC.


In ΔABC, D and E are points on the sides AB and AC respectively such that DE || BC

If AD = x, DB = x − 2, AE = x + 2 and EC = x − 1, find the value of x.


In a ΔABC, D and E are points on the sides AB and AC respectively. For  the following case show that DE || BC

AB = 2cm, AD = 8cm, AE = 12 cm and AC = l8cm.


In a ΔABC, P and Q are points on sides AB and AC respectively, such that PQ || BC. If AP = 2.4 cm, AQ = 2 cm, QC = 3 cm and BC = 6 cm, find AB and PQ.


D and E are points on the sides AB and AC respectively of a ΔABC such that DE║BC.

If` (AD)/(AB) = 8/15 and EC = 3.5cm`, find AE.


Find the length of a diagonal of a rectangle whose adjacent sides are 30cm and 16cm. 


Find the length of each side of a rhombus whose diagonals are 24cm and 10cm long. 


In the given figure, D is the midpoint of side BC and AE⊥BC. If BC = a, AC = b, AB = c, AD = p and AE = h, prove that  

(i)`B^2=p^2+ax+a^2/x` 
(ii)` c^2=p^2-ax+a^2/x`
(iii) `b^2+c^2=2p^2+a^2/2` 

(iv)`b^2-c^2=2ax` 

 


◻ABCD is a parallelogram point E is on side BC. Line DE intersects ray AB in point T. Prove that DE × BE = CE × TE. 


A line is parallel to one side of triangle which intersects remaining two sides in two distinct points then that line divides sides in same proportion.

Given: In ΔABC line l || side BC and line l intersect side AB in P and side AC in Q.

To prove: `"AP"/"PB" = "AQ"/"QC"`

Construction: Draw CP and BQ

Proof: ΔAPQ and ΔPQB have equal height.

`("A"(Δ"APQ"))/("A"(Δ"PQB")) = (["______"])/"PB"`   .....(i)[areas in proportion of base]

`("A"(Δ"APQ"))/("A"(Δ"PQC")) = (["______"])/"QC"`  .......(ii)[areas in proportion of base]

ΔPQC and ΔPQB have [______] is common base.

Seg PQ || Seg BC, hence height of ΔAPQ and ΔPQB.

A(ΔPQC) = A(Δ______)    ......(iii)

`("A"(Δ"APQ"))/("A"(Δ"PQB")) = ("A"(Δ "______"))/("A"(Δ "______"))`   ......[(i), (ii), and (iii)]

`"AP"/"PB" = "AQ"/"QC"`   .......[(i) and (ii)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×