हिंदी

In the Given Figure, D is the Midpoint of Side Bc and Ae⊥Bc. If Bc = A, Ac = B, Ab = C, Ad = P and Ae = H, Prove that - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, D is the midpoint of side BC and AE⊥BC. If BC = a, AC = b, AB = c, AD = p and AE = h, prove that  

(i)`B^2=p^2+ax+a^2/x` 
(ii)` c^2=p^2-ax+a^2/x`
(iii) `b^2+c^2=2p^2+a^2/2` 

(iv)`b^2-c^2=2ax` 

 

उत्तर

(1)In right-angled triangle AEC, applying Pythagoras theorem, we have: 

`AC^2=AE^2+EC^2` 

⇒ `B^2=h^2(x+a/2)^2=h^2+x^2+a^2/4+ax`.......(1) 

In right – angled triangle AED, we have: 

`AD^2=AE^2+ED^2` 

⇒ `p^2=h^2+x^2` .............(2) 

Therefore,
from (i) and (ii), 

`b^2=p^2+ax+a^2/x`  

(2) In right-angled triangle AEB, applying Pythagoras, we have: 

`AB^2=AE^2+EB^2` 

⇒ `c^2=h^2+(a/2-x)^2   (∵ BD=a/2 and BE=BD-x)` 

⇒ `C^2=h^2+x^2-a^2/4    (∵ h^2+x^2=p^2)` 

 ⇒`c^2=p^2-ax+a^2/x` 

(3) 

Adding (i) and (ii), we get:  

⇒` b^2+c^2=p^2+ax+a^2/4+p^2-ax+a^2/4` 

`=2p^2+ax-ax+(a^2+a^2)/4` 

=`2p^2+a^2/2` 

(4) 

Subtracting (ii) from (i), we get: 

`b^2-c^2=p^2+ax+a^2/4-(p^2-ax+a^2/4)` 

`=p^2-p^2+ax+ax+a^2/4-a^2/4` 

`=2ax`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Triangles - Exercises 4

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 4 Triangles
Exercises 4 | Q 17

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×