मराठी

In the Given Figure, D is the Midpoint of Side Bc and Ae⊥Bc. If Bc = A, Ac = B, Ab = C, Ad = P and Ae = H, Prove that - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, D is the midpoint of side BC and AE⊥BC. If BC = a, AC = b, AB = c, AD = p and AE = h, prove that  

(i)`B^2=p^2+ax+a^2/x` 
(ii)` c^2=p^2-ax+a^2/x`
(iii) `b^2+c^2=2p^2+a^2/2` 

(iv)`b^2-c^2=2ax` 

 

उत्तर

(1)In right-angled triangle AEC, applying Pythagoras theorem, we have: 

`AC^2=AE^2+EC^2` 

⇒ `B^2=h^2(x+a/2)^2=h^2+x^2+a^2/4+ax`.......(1) 

In right – angled triangle AED, we have: 

`AD^2=AE^2+ED^2` 

⇒ `p^2=h^2+x^2` .............(2) 

Therefore,
from (i) and (ii), 

`b^2=p^2+ax+a^2/x`  

(2) In right-angled triangle AEB, applying Pythagoras, we have: 

`AB^2=AE^2+EB^2` 

⇒ `c^2=h^2+(a/2-x)^2   (∵ BD=a/2 and BE=BD-x)` 

⇒ `C^2=h^2+x^2-a^2/4    (∵ h^2+x^2=p^2)` 

 ⇒`c^2=p^2-ax+a^2/x` 

(3) 

Adding (i) and (ii), we get:  

⇒` b^2+c^2=p^2+ax+a^2/4+p^2-ax+a^2/4` 

`=2p^2+ax-ax+(a^2+a^2)/4` 

=`2p^2+a^2/2` 

(4) 

Subtracting (ii) from (i), we get: 

`b^2-c^2=p^2+ax+a^2/4-(p^2-ax+a^2/4)` 

`=p^2-p^2+ax+ax+a^2/4-a^2/4` 

`=2ax`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Triangles - Exercises 4

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In ΔABC, D and E are points on the sides AB and AC respectively such that DE || BC

If AD = x, DB = x − 2, AE = x + 2 and EC = x − 1, find the value of x.


In a ΔABC, D and E are points on AB and AC respectively such that DE || BC. If AD = 2.4cm, AE = 3.2 cm, DE = 2cm and BC = 5 cm, find BD and CE.


D and E are points on the sides AB and AC respectively of a ΔABC such that DE║BC. Find the value of x, when

AD = 4cm, DB = (x – 4) cm, AE = 8cm and EC = (3x – 19) cm.  


D and E are points on the sides AB and AC respectively of a ΔABC such that DE║BC. Find the value of x, when

AD = (7x – 4) cm, AE = (5x – 2) cm, DB = (3x + 4) cm and EC = 3x cm.


ΔABC and ΔDBC lie on the same side of BC, as shown in the figure. From a point P on BC, PQ||AB and PR||BD are drawn, meeting AC at Q and CD at R respectively. Prove that QR||AD. 

 


In the given figure, O is a point inside a ΔPQR such that ∠PQR such that ∠POR = 90°, OP = 6cm and OR = 8cm. If PQ = 24cm and QR = 26cm, prove that ΔPQR is right-angled. 


In triangle BMP and CNR it is given that PB= 5 cm, MP = 6cm BM = 9 cm and NR = 9cm. If ΔBMP∼ ΔCNR then find the perimeter of ΔCNR


◻ABCD is a parallelogram point E is on side BC. Line DE intersects ray AB in point T. Prove that DE × BE = CE × TE. 


In the given figure ΔABC ~ ΔPQR, PM is median of ΔPQR. If ar ΔABC = 289 cm², BC = 17 cm, MR = 6.5 cm then the area of ΔPQM is ______.


ABCD is a trapezium in which AB || DC and P and Q are points on AD and BC, respectively such that PQ || DC. If PD = 18 cm, BQ = 35 cm and QC = 15 cm, find AD.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×