मराठी

ΔAbc and δDbc Lie on the Same Side of Bc, as Shown in the Figure. from a Point P on Bc, Pq||Ab and Pr||Bd Are Drawn, Meeting Ac at Q and Cd at R Respectively. Prove That Qr||Ad. - Mathematics

Advertisements
Advertisements

प्रश्न

ΔABC and ΔDBC lie on the same side of BC, as shown in the figure. From a point P on BC, PQ||AB and PR||BD are drawn, meeting AC at Q and CD at R respectively. Prove that QR||AD. 

 

उत्तर

In Δ CAB, PQ || AB.
Applying Thales' theorem, we get: 

`(CP)/(PB)=(CQ)/(QA)`                   ...............(1) 

Similarly, applying Thales theorem in BDC , Where PR||DM we get:  

`(CP)/(PB)=(CR)/(RD)`                  ..................(2) 

Hence, from (1) and (2), we have : 

`(CQ)/(QA)=(CR)/(RD)` 

Applying the converse of Thales’ theorem, we conclude that QR ‖ AD in Δ ADC. This completes the proof.  

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Triangles - Exercises 1

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×