English

In a Abc , Ad is a Median and Al ⊥ Bc . - Mathematics

Advertisements
Advertisements

Question

In a ABC , AD is a median and AL ⊥ BC .  

  

Prove that 

(a) `AC^2=AD^2+BC  DL+((BC)/2)^2` 

(b) `AB^2=AD^2-BC  DL+((BC)/2)^2` 

(c) `AC^2+AB^2=2.AD^2+1/2BC^2` 

 

Solution 1

(a) In right triangle ALD
Using Pythagoras theorem, we have 

`=AC^2-AL^2+LC^2` 

`=AD^2-DL^2+(DL+DC)^2 `        [Using (1)] 

=`AD^2-DL^2+(DL+(BC)/2)^2`                [∵ AD is a median] 

`=AD^2-DL^2+DL^2+((BC)/2)^2+BC.DL ` 

∴` AC^2=AD^2+BC.DL+((BC)/2)^2`             .................(2) 

(b) In right triangle ALD
Using Pythagoras theorem, we have 

`AL^2=AD^2-DL^2`           ....................(3)  

Again, In right triangle ABL
Using Pythagoras theorem, we have 

`AB^2=AL^2+LB^2` 

`=AD^2-DL^2+LB^2`            [𝑈𝑠𝑖𝑛𝑔 (3)] 

 

shaalaa.com

Solution 2

(a) In right triangle ALD
Using Pythagoras theorem, we have 

`=AC^2-AL^2+LC^2` 

`=AD^2-DL^2+(DL+DC)^2 `        [Using (1)] 

=`AD^2-DL^2+(DL+(BC)/2)^2`                [∵ AD is a median] 

`=AD^2-DL^2+DL^2+((BC)/2)^2+BC.DL ` 

∴` AC^2=AD^2+BC.DL+((BC)/2)^2`             .................(2) 

(b) In right triangle ALD
Using Pythagoras theorem, we have 

`AL^2=AD^2-DL^2`           ....................(3)  

Again, In right triangle ABL
Using Pythagoras theorem, we have 

`AB^2=AL^2+LB^2` 

`=AD^2-DL^2+LB^2`            [𝑈𝑠𝑖𝑛𝑔 (3)]  

=`AD^2-DL^2+(BD-DL)^2` 

=`AD^2DL^2+(1/2BC-DL)^2` 

=`AD^2-DL^2+((BC)/2)^2-BC.DL+DL^2` 

∴ AB^2=AD^2-BC.DL+((BC)/2)^2       .............(4) 

(c) Adding (2) and (4), we get, 

=`AC^2+AB^2=AD^2+BC.DL+((BC)/2)^2+AD^2-BC.DL+((BC)/2)^2` 

=`2AD^2+(BC^2)/4+(BC^2)/4`  

=`2AD^2+(BC^2)/4+(BC^2)/4` 

=`2AD^2+1/2BC^2` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Triangles - Exercises 4

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 4 Triangles
Exercises 4 | Q 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In ΔABC, D and E are points on the sides AB and AC respectively such that DE || BC

If AD = 6 cm, DB = 9 cm and AE = 8 cm, find AC.


In ΔABC, D and E are points on the sides AB and AC respectively such that DE || BC

If AD = 4x − 3, AE = 8x – 7, BD = 3x – 1 and CE = 5x − 3, find the volume of x.


D and E are the points on the sides AB and AC respectively of a ΔABC such that: AD = 8 cm, DB = 12 cm, AE = 6 cm and CE = 9 cm. Prove that BC = 5/2 DE.


ΔABC is an isosceles triangle with AB = AC = 13cm. The length of altitude from A on BC is 5cm. Find BC. 


In the given figure, D is the midpoint of side BC and AE⊥BC. If BC = a, AC = b, AB = c, AD = p and AE = h, prove that  

(i)`B^2=p^2+ax+a^2/x` 
(ii)` c^2=p^2-ax+a^2/x`
(iii) `b^2+c^2=2p^2+a^2/2` 

(iv)`b^2-c^2=2ax` 

 


In Δ PQR, points S and T
are the midpoints of sides PQ
and PR respectively.
If ST = 6.2 then find the length of QR.


In ΔABC, AB = 6 cm and DE || BC such that AE = `1/4` AC then the length of AD is ______.


O is the point of intersection of the diagonals AC and BD of a trapezium ABCD with AB || DC. Through O, a line segment PQ is drawn parallel to AB meeting AD in P and BC in Q. Prove that PO = QO.


Construct an equilateral triangle of side 7 cm. Now, construct another triangle similar to the first triangle such that each of its sides are `5/7` times of the corresponding sides of the first triangle.


Prove that If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. In the figure, find EC if `(AD)/(DB) = (AE)/(EC)` using the above theorem.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×