हिंदी

In the Below Fig. X and Y Are the Mid-points of Ac and Ab Respectively, Qp || Bc and Cyq and Bxp Are Straight Lines. Prove that Ar (δ Abp) = Ar (δAcq). - Mathematics

Advertisements
Advertisements

प्रश्न

In the below fig. X and Y are the mid-points of AC and AB respectively, QP || BC and
CYQ and BXP are straight lines. Prove that ar (Δ ABP) = ar (ΔACQ).

उत्तर

Since x and y are the midpoint AC and AB respectively

∴ XY ll BC

Clearly, triangles BYC and BXC are on the same base BC and between the same parallels
XY and BC

  ∴ area (ΔBYC)  = area (BXC)

⇒  area  (ΔBYC) = ar (ΔBOC) = ar (ΔBXC) - ar (BOC)

⇒  ar (ΔBOY) = ar (ΔCOX)

⇒ ar ( BOY) + ar (XOY) = ar (ΔCOX) + ar (ΔXOY)

⇒ ar  (ΔBXY = ar (ΔCXY)

We observe that the quadrilateral XYAP and XYAQ are on the same base XY and between
the same parallel XY and PQ.

  ∴ area (quad XYAP ) ar (quad XYPA)        ....(2)

Adding (1) and (2), we get

ar (ΔBXY) + ar (quad  XYAP) = ar (CXY) + ar (quad XYQA)

⇒ ar (ΔABP) = ar (ΔACQ)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Areas of Parallelograms and Triangles - Exercise 14.3 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 14 Areas of Parallelograms and Triangles
Exercise 14.3 | Q 25 | पृष्ठ ४७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×