हिंदी

In the following figure of a ship, ABDH and CEFG are two parallelograms. Find the value of x. - Mathematics

Advertisements
Advertisements

प्रश्न

In the following figure of a ship, ABDH and CEFG are two parallelograms. Find the value of x.

योग

उत्तर

We have, two parallelograms ABDH and CEFG.

Now, In ABDH,

∴ ∠ABD = ∠AHD = 130°  ...[∵ Opposite angles of a parallelogram are equal]

And ∠GHD = 180° – ∠AHD

= 180° – 130°   ...[Linear pair]

⇒ ∠GHO = 50°

Also, ∠EFG + ∠FGC = 180°   ...[∵ Adjacent angles of a parallelogram are supplementary]

⇒ 30° + ∠FGC = 180°

⇒ ∠FGC = 180° – 30° = 150°

And ∠HGC + ∠FGC = 180°   ...[Linear pair]

∠HGC = 180° – ∠FGC

= 180° – 150°

∴ ∠HGO = 30°

In ΔHGO, by using angle sum property,

∠OHG + ∠HGO + ∠HOG = 180°

⇒ 50° + 30° + x = 180°

⇒ x = 180° – 80°

= 100°

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Understanding Quadrilaterals and Practical Geometry - Exercise [पृष्ठ १५८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 8
अध्याय 5 Understanding Quadrilaterals and Practical Geometry
Exercise | Q 157. | पृष्ठ १५८

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×