हिंदी

Lim X → π Sin X X − π . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\] 

उत्तर

\[\lim_{x \to \pi} \left( \frac{\sin x}{x - \pi} \right)\]
\[\text{ LHL }: \]
\[ \lim_{x \to \pi^-} \left( \frac{\sin x}{x - \pi} \right)\]
\[\text{ If } x = \pi - h, \text{ then } h \to 0 . \]
\[ = \lim_{h \to 0} \left( \frac{\sin \left( \pi - h \right)}{\pi - h - \pi} \right)\]
\[ = \lim_{h \to 0} \left( \frac{\sin h}{- h} \right)\]
\[ = - 1\]
\[\text{ RHL }: \]
\[ \lim_{x \to \pi^+} \left( \frac{\sin x}{x - \pi} \right)\]
\[If x = \pi + h, \text{ then } h \to 0 . \]
\[ = \lim_{h \to 0} \left( \frac{\sin \left( \pi + h \right)}{\pi + h - \pi} \right)\]
\[ = \lim_{h \to 0} \left( \frac{- \sin h}{h} \right)\]
\[ = - 1\]
\[ \therefore \lim_{x \to \pi} \left( \frac{\sin x}{x - \pi} \right) = - 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.12 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.12 | Q 6 | पृष्ठ ७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\] 


\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]


\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\] 


\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\] 


\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\] 


\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\] 


\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a


If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]


\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\] 


\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\] 


\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]


Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\] 


Write the value of \[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]


\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]


\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to


\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\] 


If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal


\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\]  is equal to


\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to 


The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\] 


Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


Evaluate the following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Evaluate the following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit.

`lim_(x->3)[sqrt(x + 6)/x]`


Evaluate the Following limit: 

`lim_ (x -> 3) [sqrt (x + 6)/ x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×