Advertisements
Advertisements
प्रश्न
m के किस मान के लिए, x3 – 2mx2 + 16 द्विपद x + 2 से विभाज्य है?
उत्तर
माना p(x) = x3 – 2mx2 + 16
चूँकि, p(x), (x + 2) से विभाज्य है, तो शेष = 0
P(–2) = 0
⇒ (–2)3 – 2m(–2)2 + 16 = 0
⇒ – 8 – 8m + 16 = 0
⇒ 8 = 8m
m = 1
अतः, m का मान 1 है।
APPEARS IN
संबंधित प्रश्न
गुणनखंड ज्ञात कीजिए:
2x2 + 7x + 3
गुणनखंड ज्ञात कीजिए:
x3 - 2x2 - x + 2
गुणनखंड ज्ञात कीजिए:
2y3 + y2 - 2y - 1
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
गुणनखंड कीजिए :
6x2 + 7x – 3
घनों को ज्ञात किए बिना गुणनखंड कीजिए :
(x – 2y)3 + (2y – 3z)3 + (3z – x)3
उस आयत की लंबाई और चौड़ाई के लिए संभव व्यंजक दीजिए जिसका क्षेत्रफल 4a2 + 4a – 3 हैं।
(2x – 5y)3 – (2x + 5y)3 को सरल कीजिए।
सिद्ध कीजिए की, (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a) है।