Advertisements
Advertisements
प्रश्न
m के किस मान के लिए, x3 – 2mx2 + 16 द्विपद x + 2 से विभाज्य है?
उत्तर
माना p(x) = x3 – 2mx2 + 16
चूँकि, p(x), (x + 2) से विभाज्य है, तो शेष = 0
P(–2) = 0
⇒ (–2)3 – 2m(–2)2 + 16 = 0
⇒ – 8 – 8m + 16 = 0
⇒ 8 = 8m
m = 1
अतः, m का मान 1 है।
APPEARS IN
संबंधित प्रश्न
गुणनखंड प्रमेय लागू करके बताइए कि निम्नलिखित स्थिति में g(x), p(x) का एक गुणनखंड है या नहीं:
p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
k का मान ज्ञात कीजिए जबकि निम्नलिखित स्थिति में (x - 1), p(x) का एक गुणनखंड हो:
p(x) = `kx^2 - sqrt2x + 1`
गुणनखंड ज्ञात कीजिए:
2y3 + y2 - 2y - 1
जाँच कीजिए कि p(x), g(x) का एक गुणज है या नहीं :
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
यदि x + 1 बहुपद ax3 + x2 – 2x + 4a – 9 का एक गुणनखंड है, तो a का मान ज्ञात कीजिए।
गुणनखंड कीजिए :
2x3 – 3x2 – 17x + 30
उस आयत की लंबाई और चौड़ाई के लिए संभव व्यंजक दीजिए जिसका क्षेत्रफल 4a2 + 4a – 3 हैं।
(2x – 5y)3 – (2x + 5y)3 को सरल कीजिए।
यदि a, b और c में से प्रत्येक शून्येतर है तथा a + b + c = 0 है, तो सिद्ध कीजिए कि `a^2/(bc) + b^2/(ca) + c^2/(ab) = 3` है।