Advertisements
Advertisements
प्रश्न
मान लीजिए कि R प्राकृत संख्याओं के समुच्चय N में एक संबंध है, जो nRm यदि n विभाजित करता है m को, द्वारा परिभाषित है, तो R
विकल्प
स्वतुल्य एवं सममित है।
संक्रामक एवं सममित है।
तुल्यता संबंध है।
स्वतुल्य, संक्रामक है परंतु सममित नहीं है।
उत्तर
सही विकल्प - स्वतुल्य, संक्रामक है परंतु सममित नहीं है।
क्योंकि n विभाजित करता है m को ∀ n ∈ N, तो R स्वतुल्य है।R सममित नहीं है, क्योंकि 3, 6 ∈ N परंतु 3R6 ≠ 6 R 3. R संक्रामक है, क्योंकि n, m, r के लिए जब-जब nlm तथा mlr ⇒ n/r, अर्थात जब-जब विभाजित करता है r को।
APPEARS IN
संबंधित प्रश्न
फलन f(x) = f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)` का प्रांत ज्ञात कीजिए।
यदि f : R → R जहाँ f(x) = x2 - 3x + 2 द्वारा परिभाषित है तो f(f(x)) ज्ञात कीजिए |
मान लीजिए कि A = {0, 1, 2, 3} तथा A में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
क्या R स्वतुल्य, सममित, संक्रामक है?
मान लीजिए कि f : R → R, f (x) = 4x – 3 ∀ x ∈ R द्वारा परिभषित एक फलन है, तो f –1 लिखिए।
यदि f = {(5, 2), (6, 3)} तथा g = {(2, 5), (3, 6)}, तो f तथा g के परिसर लिखिए।
यदि A = {1, 2, 3} तथा f, g, A × A के उप-समुच्चय के संग निम्नलिखित प्रकार सूचित संबंध हैं
f = {(1, 3), (2, 3), (3, 2)}
g = {(1, 2), (1, 3), (3, 1)}
f तथा g में से कौन फलन है और क्यों?
यदि A = {a, b, c, d} तथा f = {a, b), (b, d), (c, a), (d, c)} तो सिद्ध कीजिए कि f एकैकी है तथा A से A पर आच्छादि है। f –1 भी ज्ञात कीजिए।
मान लीजिए कि R वास्तविक संख्याओ का समुच्चय है तथा f : R → R एक फलन है, जो f (x) = 4x + 5 द्वारा परिभाषित है। सिद्ध कीजिए कि f व्युत्क्रमणीय है तथा f–1 ज्ञात कीजिए।
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए a * b = ab2
मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f
मान लीजिए कि A एक परिमित समुच्चय है, तो A से स्वयं A में प्रत्येक एकैक फलन आच्छादी नहीं है।
मान लीजिए कि f , g : R → R क्रमश: f (x) = 2x + 1 तथा g (x) = x2 – 2, ∀ x ∈ R द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए।
यदि प्रतिचित्रण f तथा g क्रमश: f = {(1, 2), (3, 5), (4, 1)} तथा g = {(2, 3), (5, 1), (1, 3)} द्वारा दत्त हैं, तो f o g लिखिए।
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
g = {(1, 4), (2, 4), (3, 4)}
मान लीजिए कि R, प्राकृत संख्याओं के समुच्चय N में निम्नलिखित प्रकार से परिभाषित एक संबंध है।
R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}। संबंध R का प्रांत तथा परिसर ज्ञात कीजिए। साथ ही सत्यापित (जाँच) कीजिए कि क्या R स्वतुल्य, सममित तथा संक्रामक है।
दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :
A से B में एक एकैक प्रतिचित्रण।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
न तो एकैकी है और न आच्छादक है।
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x बड़ा है y से, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o g ज्ञात कीजिए:
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए:
यदि समुच्चय {1, 2, 3} में R = {(1, 2)} द्वारा परिभाषित एक संबंध R है, तो R ______ है।
मान लीजिए कि हम R में एक संबंध R इस प्रकार परिभाषित करें aRb यदि a ≥ b, तो R _________ है।
Z से Z में निम्नलिखित फलनों से कौन-से एकैकी आच्छादी हैं?
मान लीजिए कि f: R - `{3/5}` → R, f(x) = `(3x + 2)/(5x - 3)` द्वारा परिभाषित है, तो ______
मान लीजिए f: R → R, f(x) = `{{:(2x",", x > 3),(x^2",", 1 < x ≤ 3),(3x",", x ≤ 1):}` द्वारा परिभाषित है, तो f (-1) + f (2) + f (4) ______ है।
मान लीजिए कि f = {(1, 2), (3, 5), (4, 1) तथा g = {(2, 3), (5, 1), (1, 3)}। तो g o f = ______ तथा f o g = ______।
मान लीजिए कि f: R → R, f(x) = `x/sqrt(1 + x^2)` द्वारा परिभाषित है, तो ( f o f o f ) (x) = ______।