हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

P Can Simple Harmonic Motion Take Place in a Non-inertial Frame? If Yes, Should the Ratio of the Force Applied with the Displacement Be Constant? - Physics

Advertisements
Advertisements

प्रश्न

Can simple harmonic motion take place in a non-inertial frame? If yes, should the ratio of the force applied with the displacement be constant?

टिप्पणी लिखिए

उत्तर

Yes. Simple harmonic motion can take place in a non-inertial frame. However, the ratio of the force applied to the displacement cannot be constant because a non-inertial frame has some acceleration with respect to the inertial frame. Therefore, a fictitious force should be added to explain the motion.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Short Answers [पृष्ठ २४९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Short Answers | Q 3 | पृष्ठ २४९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A body of mass 1 kg is made to oscillate on a spring of force constant 16 N/m. Calculate:

a) Angular frequency

b) frequency of vibration.


A small creature moves with constant speed in a vertical circle on a bright day. Does its shadow formed by the sun on a horizontal plane move in a sample harmonic motion?


A particle executes simple harmonic motion Let P be a point near the mean position and Q be a point near an extreme. The speed of the particle at P is larger than the speed at Q. Still the particle crosses Pand Q equal number of times in a given time interval. Does it make you unhappy?


In measuring time period of a pendulum, it is advised to measure the time between consecutive passage through the mean position in the same direction. This is said to result in better accuracy than measuring time between consecutive passage through an extreme position. Explain.


Can a pendulum clock be used in an earth-satellite?


A hollow sphere filled with water is used as the bob of a pendulum. Assume that the equation for simple pendulum is valid with the distance between the point of suspension and centre of mass of the bob acting as the effective length of the pendulum. If water slowly leaks out of the bob, how will the time period vary?


The force acting on a particle moving along X-axis is F = −k(x − vo t) where k is a positive constant. An observer moving at a constant velocity v0 along the X-axis looks at the particle. What kind of motion does he find for the particle?


A particle moves on the X-axis according to the equation x = A + B sin ωt. The motion is simple harmonic with amplitude


A pendulum clock that keeps correct time on the earth is taken to the moon. It will run


A particle moves in a circular path with a continuously increasing speed. Its motion is


An object is released from rest. The time it takes to fall through a distance h and the speed of the object as it falls through this distance are measured with a pendulum clock. The entire apparatus is taken on the moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal


Assume that a tunnel is dug across the earth (radius = R) passing through its centre. Find the time a particle takes to cover the length of the tunnel if (a) it is projected into the tunnel with a speed of \[\sqrt{gR}\] (b) it is released from a height R above the tunnel (c) it is thrown vertically upward along the length of tunnel with a speed of \[\sqrt{gR}\]


In a simple harmonic oscillation, the acceleration against displacement for one complete oscillation will be __________.


If the inertial mass and gravitational mass of the simple pendulum of length l are not equal, then the time period of the simple pendulum is


Define the frequency of simple harmonic motion.


Consider the Earth as a homogeneous sphere of radius R and a straight hole is bored in it through its centre. Show that a particle dropped into the hole will execute a simple harmonic motion such that its time period is

T = `2π sqrt("R"/"g")`


A body oscillates with SHM according to the equation x = 5 cos `(2π"t" + π/4)`. Its instantaneous displacement at t = 1 sec is:


What is the ratio of maxmimum acceleration to the maximum velocity of a simple harmonic oscillator?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×