हिंदी

A Body of Mass 1 Kg is Made to Oscillate on a Spring of Force Constant 16 N/M. Calculate: Angular Frequency Frequency of Vibration. - Physics

Advertisements
Advertisements

प्रश्न

A body of mass 1 kg is made to oscillate on a spring of force constant 16 N/m. Calculate:

a) Angular frequency

b) frequency of vibration.

उत्तर

m = 1 kg, K = 16 N/m

ω = ?, n = ?

We have, for S.H.M.

ω = `sqrt(K/M)`

= `sqrt(16/1)`

∴ ω = 4 rad/s

Also, ω = 2πn

∴ n = `ω/(2pi)`

=  `4/(2pi) = 2/pi Hz`

∴ n = `2/3.14 = [log(2) - log(3.14)]`

= [0.3010 − 0.4969]

= antilog [1.8041]

= 0.6369

= 0.6369 Hz

The angular frequency of the body is 4 rad/s and the frequency of vibration is 0.6369 Hz.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2012-2013 (October)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?

(a) a = 0.7x

(b) a = –200x2

(c) a = –10x

(d) a = 100x3


Assuming the expression for displacement of a particle starting from extreme position, explain graphically the variation of velocity and acceleration w.r.t. time.


Can a pendulum clock be used in an earth-satellite?


A hollow sphere filled with water is used as the bob of a pendulum. Assume that the equation for simple pendulum is valid with the distance between the point of suspension and centre of mass of the bob acting as the effective length of the pendulum. If water slowly leaks out of the bob, how will the time period vary?


The time period of a particle in simple harmonic motion is equal to the smallest time between the particle acquiring a particular velocity \[\vec{v}\] . The value of v is


The displacement of a particle is given by \[\overrightarrow{r} = A\left( \overrightarrow{i} \cos\omega t + \overrightarrow{j} \sin\omega t \right) .\] The motion of the particle is

 

A wall clock uses a vertical spring-mass system to measure the time. Each time the mass reaches an extreme position, the clock advances by a second. The clock gives correct time at the equator. If the clock is taken to the poles it will


A pendulum clock keeping correct time is taken to high altitudes,


A particle moves in a circular path with a continuously increasing speed. Its motion is


Which of the following quantities are always negative in a simple harmonic motion?

(a) \[\vec{F} . \vec{a} .\]

(b) \[\vec{v} . \vec{r} .\]

(c) \[\vec{a} . \vec{r} .\]

(d)\[\vec{F} . \vec{r} .\]


Which of the following quantities are always positive in a simple harmonic motion?


A particle moves in the X-Y plane according to the equation \[\overrightarrow{r} = \left( \overrightarrow{i} + 2 \overrightarrow{j} \right)A\cos\omega t .\] 

The motion of the particle is
(a) on a straight line
(b) on an ellipse
(c) periodic
(d) simple harmonic


A particle moves on the X-axis according to the equation x = x0 sin2 ωt. The motion is simple harmonic


All the surfaces shown in figure are frictionless. The mass of the care is M, that of the block is m and the spring has spring constant k. Initially the car and the block are at rest and the spring is stretched through a length x0 when the system is released. (a) Find the amplitudes of the simple harmonic motion of the block and of the care as seen from the road. (b) Find the time period(s) of the two simple harmonic motions.


A pendulum clock giving correct time at a place where g = 9.800 m/s2 is taken to another place where it loses 24 seconds during 24 hours. Find the value of g at this new place.


A spherical ball of mass m and radius r rolls without slipping on a rough concave surface of large radius R. It makes small oscillations about the lowest point. Find the time period.


Assume that a tunnel is dug across the earth (radius = R) passing through its centre. Find the time a particle takes to cover the length of the tunnel if (a) it is projected into the tunnel with a speed of \[\sqrt{gR}\] (b) it is released from a height R above the tunnel (c) it is thrown vertically upward along the length of tunnel with a speed of \[\sqrt{gR}\]


A simple pendulum of length 1 feet suspended from the ceiling of an elevator takes π/3 seconds to complete one oscillation. Find the acceleration of the elevator.


A hollow sphere of radius 2 cm is attached to an 18 cm long thread to make a pendulum. Find the time period of oscillation of this pendulum. How does it differ from the time period calculated using the formula for a simple pendulum?


A uniform disc of mass m and radius r is suspended through a wire attached to its centre. If the time period of the torsional oscillations be T, what is the torsional constant of the wire?


A particle is subjected to two simple harmonic motions of same time period in the same direction. The amplitude of the first motion is 3.0 cm and that of the second is 4.0 cm. Find the resultant amplitude if the phase difference between the motions is (a) 0°, (b) 60°, (c) 90°.


A particle executing SHM crosses points A and B with the same velocity. Having taken 3 s in passing from A to B, it returns to B after another 3 s. The time period is ____________.


Write short notes on two springs connected in parallel.


Describe Simple Harmonic Motion as a projection of uniform circular motion.


The displacement of a particle varies with time according to the relation y = a sin ωt + b cos ωt.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×