मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

P Can Simple Harmonic Motion Take Place in a Non-inertial Frame? If Yes, Should the Ratio of the Force Applied with the Displacement Be Constant? - Physics

Advertisements
Advertisements

प्रश्न

Can simple harmonic motion take place in a non-inertial frame? If yes, should the ratio of the force applied with the displacement be constant?

टीपा लिहा

उत्तर

Yes. Simple harmonic motion can take place in a non-inertial frame. However, the ratio of the force applied to the displacement cannot be constant because a non-inertial frame has some acceleration with respect to the inertial frame. Therefore, a fictitious force should be added to explain the motion.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Simple Harmonics Motion - Short Answers [पृष्ठ २४९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 12 Simple Harmonics Motion
Short Answers | Q 3 | पृष्ठ २४९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In a damped harmonic oscillator, periodic oscillations have _______ amplitude.

(A) gradually increasing

(B) suddenly increasing

(C) suddenly decreasing

(D) gradually decreasing


A body of mass 1 kg is made to oscillate on a spring of force constant 16 N/m. Calculate:

a) Angular frequency

b) frequency of vibration.


In measuring time period of a pendulum, it is advised to measure the time between consecutive passage through the mean position in the same direction. This is said to result in better accuracy than measuring time between consecutive passage through an extreme position. Explain.


The force acting on a particle moving along X-axis is F = −k(x − vo t) where k is a positive constant. An observer moving at a constant velocity v0 along the X-axis looks at the particle. What kind of motion does he find for the particle?


The motion of a torsional pendulum is
(a) periodic
(b) oscillatory
(c) simple harmonic
(d) angular simple harmonic


Which of the following quantities are always negative in a simple harmonic motion?

(a) \[\vec{F} . \vec{a} .\]

(b) \[\vec{v} . \vec{r} .\]

(c) \[\vec{a} . \vec{r} .\]

(d)\[\vec{F} . \vec{r} .\]


A particle moves on the X-axis according to the equation x = x0 sin2 ωt. The motion is simple harmonic


An object is released from rest. The time it takes to fall through a distance h and the speed of the object as it falls through this distance are measured with a pendulum clock. The entire apparatus is taken on the moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal


A pendulum clock giving correct time at a place where g = 9.800 m/s2 is taken to another place where it loses 24 seconds during 24 hours. Find the value of g at this new place.


A small block oscillates back and forth on a smooth concave surface of radius R ib Figure . Find the time period of small oscillation.


A small block oscillates back and forth on a smooth concave surface of radius R in Figure. Find the time period of small oscillation.


Assume that a tunnel is dug along a chord of the earth, at a perpendicular distance R/2 from the earth's centre where R is the radius of the earth. The wall of the tunnel is frictionless. (a) Find the gravitational force exerted by the earth on a particle of mass mplaced in the tunnel at a distance x from the centre of the tunnel. (b) Find the component of this force along the tunnel and perpendicular to the tunnel. (c) Find the normal force exerted by the wall on the particle. (d) Find the resultant force on the particle. (e) Show that the motion of the particle in the tunnel is simple harmonic and find the time period.


A simple pendulum of length l is suspended through the ceiling of an elevator. Find the time period of small oscillations if the elevator (a) is going up with and acceleration a0(b) is going down with an acceleration a0 and (c) is moving with a uniform velocity.


The length of a second’s pendulum on the surface of the Earth is 0.9 m. The length of the same pendulum on the surface of planet X such that the acceleration of the planet X is n times greater than the Earth is


If the inertial mass and gravitational mass of the simple pendulum of length l are not equal, then the time period of the simple pendulum is


A simple harmonic motion is given by, x = 2.4 sin ( 4πt). If distances are expressed in cm and time in seconds, the amplitude and frequency of S.H.M. are respectively, 


The displacement of a particle varies with time according to the relation y = a sin ωt + b cos ωt.


What is the ratio of maxmimum acceleration to the maximum velocity of a simple harmonic oscillator?


The velocities of a particle in SHM at positions x1 and x2 are v1 and v2 respectively, its time period will be ______.


Assume there are two identical simple pendulum clocks. Clock - 1 is placed on the earth and Clock - 2 is placed on a space station located at a height h above the earth's surface. Clock - 1 and Clock - 2 operate at time periods 4 s and 6 s respectively. Then the value of h is ______.

(consider the radius of earth RE = 6400 km and g on earth 10 m/s2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×