हिंदी

S is any point on side QR of a ∆PQR. Show that: PQ + QR + RP > 2PS. - Mathematics

Advertisements
Advertisements

प्रश्न

S is any point on side QR of a ∆PQR. Show that: PQ + QR + RP > 2PS.

योग

उत्तर

Given: In ∆PQR, S is any point on side QR.


To show: PQ + QR + RP > 2PS

Proof: In ∆PQS,

PQ + QS > PS  ...(i) [Sum of two sides of a triangle is greater than the third side]

Similarly, in ∆PRS,

SR + RP  > PS  ...(ii) [Sum of two sides of a triangle is greater than the third side]

On adding equations (i) and (ii), we get

PQ + QS + SR + RP > 2PS

⇒ PQ + (QS + SR) + RP > 2PS

⇒ PQ + QR + RP > 2PS   ...[∵ QR = QS + SR]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.3 [पृष्ठ ६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 7 Triangles
Exercise 7.3 | Q 6. | पृष्ठ ६७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×