हिंदी

Show that the Diagonals of a Parallelogram Divide It into Four Triangles of Equal Area. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the diagonals of a parallelogram divide it into four triangles of equal area.

उत्तर

We know that diagonals of parallelogram bisect each other.

Therefore, O is the mid-point of AC and BD.

BO is the median in ΔABC. Therefore, it will divide it into two triangles of equal areas.

∴ Area (ΔAOB) = Area (ΔBOC) ... (1)

In ΔBCD, CO is the median.

∴ Area (ΔBOC) = Area (ΔCOD) ... (2)

Similarly, Area (ΔCOD) = Area (ΔAOD) ... (3)

From equations (1), (2), and (3), we obtain

Area (ΔAOB) = Area (ΔBOC) = Area (ΔCOD) = Area (ΔAOD)

Therefore, it is evident that the diagonals of a parallelogram divide it into four triangles of equal area.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Areas of Parallelograms and Triangles - Exercise 9.3 [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 9 Areas of Parallelograms and Triangles
Exercise 9.3 | Q 3 | पृष्ठ १६२

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×