Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि किसी वृत्त के एक चाप के मध्य-बिंदु पर वृत्त की स्पर्श रेखा उस चाप के सिरों को मिलाने वाली जीवा के समांतर होती है।
उत्तर
आइए एक वृत्त बनाएं जिसमें AMB एक चाप है और M चाप AMB का मध्य-बिंदु है।
AM और MB से जुड़े।
साथ ही TT' वृत्त पर बिंदु M पर एक स्पर्शरेखा है।
सिद्ध करने के लिए: AB || TT'
प्रमाण: चूँकि M, चाप AMB का मध्य बिंदु है।
आर्क AM = आर्क MB
AM = MB ...[जैसा कि समान जीवाएं समान चापों को काटती हैं।]
∠ABM = ∠BAM ...[समान भुजाओं के सम्मुख कोण बराबर होते हैं।] [1]
अब, ∠BMT' = ∠BAM ...[स्पर्श रेखा और जीवा के बीच का कोण जीवा द्वारा एकांतर खंड में बनाए गए कोण के बराबर होता है।] [2]
[1] और [2] से
∠ABM = ∠BMT'
तो, AB || TT' ...[यदि आंतरिक एकांतर कोण बराबर हों तो दो रेखाएं समानांतर होती हैं।]
अत: सिद्ध हुआ!
APPEARS IN
संबंधित प्रश्न
आकृति में, यदि ∠AOB = 125° है, तो ∠COD बराबर ______ है।
दो संकेंद्रीय वृत्तों में से बाहरी वृत्त की त्रिज्या 5 cm है तथा इसकी 8 cm लंबी जीवा AC आंतरिक वृत्त की स्पर्श रेखा है। आंतरिक वृत्त की त्रिज्या ज्ञात कीजिए।
उपरोक्त प्रश्न 5 में, यदि दोनों वृत्तों की त्रिज्याएँ बराबर हों, तो सिद्ध कीजिए कि AB = CD है।
एक वृत्त की जीवा PQ, बिंदु R पर इस वृत्त की स्पर्श रेखा के समांतर है। सिद्ध कीजिए कि बिंदु R चाप PRQ को समद्विभाजित करता है।
सिद्ध कीजिए कि किसी वृत्त का एक व्यास AB उन सभी जीवाओं को समद्विभाजित करता है, जो बिंदु A से खींची गई वृत्त की स्पर्श रेखा के समांतर हैं।
केंद्रों O और O' वाले तथा क्रमशः त्रिज्याओं 3 cm और 4 cm वाले दो वृत्त परस्पर बिंदुओं P और Q पर इस प्रकार प्रतिच्छेद करते हैं। कि OP और O' P दोनों वृत्तों की स्पर्श रेखाएँ हैं। उभयनिष्ठ जीवा PQ की लंबाई ज्ञात कीजिए।
आकृति में, एक वृत्त पर दो स्पर्श रेखाएँ PQ और PR इस प्रकार खींची गई हैं कि ∠RPQ = 30° है। एक जीवा RS स्पर्श रेखा PQ के समांतर खींची जाती है। ∠RQS ज्ञात कीजिए।
[संकेत: Q से होकर जाती हुई QP पर एक लंब रेखा खींचिए।]
आकृति में, O त्रिज्या 5 cm वाले वृत्त का केंद्र है, T एक बिंदु इस प्रकार है कि OT = 13 cm है तथा OT वृत्त को E पर प्रतिच्छेद करती है। यदि AB, बिंदु E पर वृत्त की एक स्पर्श रेखा है तो AB की लंबाई ज्ञात कीजिए।
किसी वृत्त की बिंदु C पर खींची गई स्पर्श रेखा और व्यास AB बढ़ाने पर बिंदु P पर प्रतिच्छेद करते हैं। यदि ∠PCA = 110° है, तो ∠CBA ज्ञात कीजिए।
यदि त्रिज्या 9 cm वाले एक वृत्त के अंतर्गत एक समद्विबाहु त्रिभुज ABC खींचा गया है, जिसमें AB = AC = 6 cm है, तो उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।