Advertisements
Advertisements
प्रश्न
Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is :
\[\ce{^38Sulphur ->[half-life][= 2.48h] ^{38}Cl ->[half-life][= 0.62h] ^38Air (stable)}\]
Assume that we start with 1000 38S nuclei at time t = 0. The number of 38Cl is of count zero at t = 0 and will again be zero at t = ∞ . At what value of t, would the number of counts be a maximum?
उत्तर
\[\ce{^38S ->[][2.48 h] ^38Cl ->[][0.62h] 38Ar}\]
At time t, Let 38S have N1(t ) active nuclei and 38Cl have N2(t) active nuclei.
`(dN_1)/(dt) = -λ_1N_1` = rate of formation of Cl38.
Also `(dN_2)/(dt) = - λ_1N_2 + λ_1N_1`
But `N_1 = N_0e^(-λ_1t)`
`(dN_2)/(dt) = - λ_1 N_0e^(-λ_1t) - λ_2N_2`
Multiplying by `e^(λ_2t) dt` and rearranging
`e^(λ_2t) dN_2 + λ_2N_2e^(λ_2t) dt = λ_1N_0e^((λ_2 - λ_1)t) dt`
Integrating both sides.
`N_2e^(λ_2t) = (N_0λ_1)/(λ_2 - λ_1) e^((λ_2 - λ_1)t) + C`
Since at t = 0, N2 = 0, C = `-(N_0λ_1)/(λ_2 - λ_1)`
∴ `N_2e^(λ_2t) = (N_0λ_1)/(λ_2 - λ_1) e^((λ_2 - λ_1)t) + C`
`N_2 = (N_0λ_1)/(λ_2 - λ_1) (e^(-λ.t) - e^(-λ_2t))`
For maximum count, `(dN_2)/(dt)` = 0
On solving, `t = (In λ_1/λ_2)/(λ_1 - λ_2)`
= In `(2.48/0.62)/(2.48 - 0.62)`
= `(In 4)/1.86`
= `(2.303 log 4)/1.86`
= 0.745 s.
APPEARS IN
संबंधित प्रश्न
The decay constant of radioactive substance is 4.33 x 10-4 per year. Calculate its half life period.
Derive the mathematical expression for law of radioactive decay for a sample of a radioactive nucleus
The Q value of a nuclear reaction \[\ce{A + b → C + d}\] is defined by
Q = [ mA+ mb− mC− md]c2 where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.
\[\ce{^1_1H + ^3_1H -> ^2_1H + ^2_1H}\]
Atomic masses are given to be
`"m"(""_1^2"H")` = 2.014102 u
`"m"(""_1^3"H")` = 3.016049 u
`"m"(""_6^12"C")` = 12.000000 u
`"m"(""_10^20"Ne")` = 19.992439 u
Under certain circumstances, a nucleus can decay by emitting a particle more massive than an α-particle. Consider the following decay processes:
\[\ce{^223_88Ra -> ^209_82Pb + ^14_6C}\]
\[\ce{^223_88 Ra -> ^219_86 Rn + ^4_2He}\]
Calculate the Q-values for these decays and determine that both are energetically allowed.
(a) Derive the relation between the decay constant and half life of a radioactive substance.
(b) A radioactive element reduces to 25% of its initial mass in 1000 years. Find its half life.
The isotope \[\ce{^57Co}\] decays by electron capture to \[\ce{^57Fe}\] with a half-life of 272 d. The \[\ce{^57Fe}\] nucleus is produced in an excited state, and it almost instantaneously emits gamma rays.
(a) Find the mean lifetime and decay constant for 57Co.
(b) If the activity of a radiation source 57Co is 2.0 µCi now, how many 57Co nuclei does the source contain?
c) What will be the activity after one year?
What percentage of radioactive substance is left after five half-lives?
Two electrons are ejected in opposite directions from radioactive atoms in a sample of radioactive material. Let c denote the speed of light. Each electron has a speed of 0.67 c as measured by an observer in the laboratory. Their relative velocity is given by ______.
Samples of two radioactive nuclides A and B are taken. λA and λB are the disintegration constants of A and B respectively. In which of the following cases, the two samples can simultaneously have the same decay rate at any time?
- Initial rate of decay of A is twice the initial rate of decay of B and λA = λB.
- Initial rate of decay of A is twice the initial rate of decay of B and λA > λB.
- Initial rate of decay of B is twice the initial rate of decay of A and λA > λB.
- Initial rate of decay of B is the same as the rate of decay of A at t = 2h and λB < λA.
What is the half-life period of a radioactive material if its activity drops to 1/16th of its initial value of 30 years?