हिंदी

Calculate Its Half Life Period. - Physics

Advertisements
Advertisements

प्रश्न

The decay constant of radioactive substance is 4.33 x 10-4 per year. Calculate its half life period.

 

उत्तर

Here, λ= 4.33 * 10−4 per year

t1/2 = `0.6931/lambda`

∴ t1/2 = `0.6931/lambda =0.6931/(4.33*10^-4)`

 ∴t1/2 = 1600.69 years or

 t1/2 =0.16*104*365 days

∴t1/2 = 584000days

 

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

(a) Write the basic nuclear process involved in the emission of β+ in a symbolic form, by a radioactive nucleus.

(b) In the reactions given below:

(i)`""_16^11C->_y^zB+x+v`

(ii)`""_6^12C+_6^12C->_a^20 Ne + _b^c He`

Find the values of x, y, and z and a, b and c.

 

State the law of radioactive decay.


Derive the mathematical expression for law of radioactive decay for a sample of a radioactive nucleus


How is the mean life of a given radioactive nucleus related to the decay constant?


Why is it found experimentally difficult to detect neutrinos in nuclear β-decay?


A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to a) 3.125%, b) 1% of its original value?


The normal activity of living carbon-containing matter is found to be about 15 decays per minute for every gram of carbon. This activity arises from the small proportion of radioactive `""_6^14"C"` present with the stable carbon isotope `""_6^12"C"`. When the organism is dead, its interaction with the atmosphere (which maintains the above equilibrium activity) ceases and its activity begins to drop. From the known half-life (5730 years) of `""_6^14"C"` and the measured activity, the age of the specimen can be approximately estimated. This is the principle of `""_6^14"C"` dating used in archaeology. Suppose a specimen from Mohenjodaro gives an activity of 9 decays per minute per gram of carbon. Estimate the approximate age of the Indus-Valley civilisation.


Obtain the amount of `""_27^60"Co"` necessary to provide a radioactive source of 8.0 mCi strength. The half-life of `""_27^60"Co"` is 5.3 years.


The radionuclide 11C decays according to 

\[\ce{^11_6C -> ^11_5B + e+ + \text{v}}\] : T1/2 = 20.3 min

The maximum energy of the emitted positron is 0.960 MeV.

Given the mass values: `"m"(""_6^11"C") = 11.011434 u and "m"(""_6^11"B") = 11.009305 "u"`

Calculate Q and compare it with the maximum energy of the positron emitted.


Under certain circumstances, a nucleus can decay by emitting a particle more massive than an α-particle. Consider the following decay processes:

\[\ce{^223_88Ra -> ^209_82Pb + ^14_6C}\]

\[\ce{^223_88 Ra -> ^219_86 Rn + ^4_2He}\]

Calculate the Q-values for these decays and determine that both are energetically allowed.


A radioactive nucleus 'A' undergoes a series of decays as given below:

The mass number and atomic number of A2 are 176 and 71 respectively. Determine the mass and atomic numbers of A4 and A.


Using the equation `N = N_0e^(-lambdat)` obtain the relation between half-life (T) and decay constant (`lambda`) of a radioactive substance.


Define the activity of a given radioactive substance. Write its S.I. unit.


The radioactive isotope D decays according to the sequence

If the mass number and atomic number of D2 are 176 and 71 respectively, what is (i) the mass number (ii) atomic number of D?


In a radioactive decay, neither the atomic number nor the mass number changes. Which of the following particles is emitted in the decay?


A freshly prepared radioactive source of half-life 2 h emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is


Lithium (Z = 3) has two stable isotopes 6Li and 7Li. When neutrons are bombarded on lithium sample, electrons and α-particles are ejected. Write down the nuclear process taking place.


28Th emits an alpha particle to reduce to 224Ra. Calculate the kinetic energy of the alpha particle emitted in the following decay:

`""^228"Th" → ""^224"Ra"^(∗) + alpha`

`""^224"Ra"^(∗) → ""^224"Ra" + γ (217 "keV")`.

Atomic mass of 228Th is 228.028726 u, that of 224Ra is 224.020196 u and that of  `""_2^4H` is 4.00260 u.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)


Calculate the maximum kinetic energy of the beta particle emitted in the following decay scheme:
12N → 12C* + e+ + v
12C* → 12C + γ (4.43MeV).
The atomic mass of 12N is 12.018613 u.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)


The decay constant of `""_80^197`Hg (electron capture to `""_79^197`Au) is 1.8 × 10−4 S−1. (a) What is the half-life? (b) What is the average-life? (c) How much time will it take to convert 25% of this isotope of mercury into gold?


A radioactive isotope is being produced at a constant rate dN/dt = R in an experiment. The isotope has a half-life t1/2. Show that after a time t >> t1/2 the number of active nuclei will become constant. Find the value of this constant.


The half-life of 40K is 1.30 × 109 y. A sample of 1.00 g of pure KCI gives 160 counts s−1. Calculate the relative abundance of 40K (fraction of 40K present) in natural potassium.


Define one Becquerel.


What is the amount of \[\ce{_27^60Co}\] necessary to provide a radioactive source of strength 10.0 mCi, its half-life being 5.3 years?


Disintegration rate of a sample is 1010 per hour at 20 hours from the start. It reduces to 6.3 x 109 per hour after 30 hours. Calculate its half-life and the initial number of radioactive atoms in the sample.


The isotope \[\ce{^57Co}\] decays by electron capture to \[\ce{^57Fe}\] with a half-life of 272 d. The \[\ce{^57Fe}\] nucleus is produced in an excited state, and it almost instantaneously emits gamma rays.
(a) Find the mean lifetime and decay constant for 57Co.
(b) If the activity of a radiation source 57Co is 2.0 µCi now, how many 57Co nuclei does the source contain?

c) What will be the activity after one year?


Before the year 1900 the activity per unit mass of atmospheric carbon due to the presence of 14C averaged about 0.255 Bq per gram of carbon.
(a) What fraction of carbon atoms were 14C?
(b) An archaeological specimen containing 500 mg of carbon, shows 174 decays in one hour. What is the age of the specimen, assuming that its activity per unit mass of carbon when the specimen died was equal to the average value of the air? The half-life of 14C is 5730 years.


Which one of the following nuclei has shorter meant life?

 


'Half-life' of a radioactive substance accounts for ______.


Two radioactive materials Y1 and Y2 have decay constants '5`lambda`' and `lambda` respectively. Initially they have same number of nuclei. After time 't', the ratio of number of nuclei of Y1 to that of Y2 is `1/"e"`, then 't' is equal to ______.


What percentage of radioactive substance is left after five half-lives?


If 10% of a radioactive material decay in 5 days, then the amount of original material left after 20 days is approximately :


The half-life of the radioactive substance is 40 days. The substance will disintegrate completely in


Suppose we consider a large number of containers each containing initially 10000 atoms of a radioactive material with a half life of 1 year. After 1 year ______.


When a nucleus in an atom undergoes a radioactive decay, the electronic energy levels of the atom ______.


Samples of two radioactive nuclides A and B are taken. λA and λB are the disintegration constants of A and B respectively. In which of the following cases, the two samples can simultaneously have the same decay rate at any time?

  1. Initial rate of decay of A is twice the initial rate of decay of B and λA = λB.
  2. Initial rate of decay of A is twice the initial rate of decay of B and λA > λB.
  3. Initial rate of decay of B is twice the initial rate of decay of A and λA > λB.
  4. Initial rate of decay of B is the same as the rate of decay of A at t = 2h and λB < λA.

The variation of decay rate of two radioactive samples A and B with time is shown in figure.

Which of the following statements are true?

  1. Decay constant of A is greater than that of B, hence A always decays faster than B.
  2. Decay constant of B is greater than that of A but its decay rate is always smaller than that of A.
  3. Decay constant of A is greater than that of B but it does not always decay faster than B.
  4. Decay constant of B is smaller than that of A but still its decay rate becomes equal to that of A at a later instant.

Draw a graph showing the variation of decay rate with number of active nuclei.


A piece of wood from the ruins of an ancient building was found to have a 14C activity of 12 disintegrations per minute per gram of its carbon content. The 14C activity of the living wood is 16 disintegrations per minute per gram. How long ago did the tree, from which the wooden sample came, die? Given half-life of 14C is 5760 years.


Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is :

\[\ce{^38Sulphur ->[half-life][= 2.48h] ^{38}Cl ->[half-life][= 0.62h] ^38Air (stable)}\]

Assume that we start with 1000 38S nuclei at time t = 0. The number of 38Cl is of count zero at t = 0 and will again be zero at t = ∞ . At what value of t, would the number of counts be a maximum?


The radioactivity of an old sample of whisky due to tritium (half-life 12.5 years) was found to be only about 4% of that measured in a recently purchased bottle marked 10 years old. The age of a sample is ______ years.


What is the half-life period of a radioactive material if its activity drops to 1/16th of its initial value of 30 years?


The half-life of `""_82^210Pb` is 22.3 y. How long will it take for its activity 0 30% of the initial activity?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×