हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Calculate the Maximum Kinetic Energy of the Beta Particle Emitted in the Following Decay Scheme: - Physics

Advertisements
Advertisements

प्रश्न

Calculate the maximum kinetic energy of the beta particle emitted in the following decay scheme:
12N → 12C* + e+ + v
12C* → 12C + γ (4.43MeV).
The atomic mass of 12N is 12.018613 u.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)

योग

उत्तर

Given:-
 Atomic mass of 12N, m(12N) = 12.018613 u
 12N → 12C* + e+ + v
 12C* → 12C + γ (4.43 MeV)

Net reaction is given by

12N → 12C + e+ + v + γ (4.43 MeV)

Qvalue  of the `β^+` decay will be

Qvalue = [m(`""^12N`) - (m(12C*) + 2me)]c2

`= [12.018613 xx 931 "MeV" - (12 xx 931 + 4.43) "MeV" - (2 xx 511) "keV"]`

= [11189.3287  - 11176.43  - 1.022] MeV

`= 11.8767  "MeV" = 11.88  "MeV"`

The maximum kinetic energy of beta particle will be 11.88 MeV, assuming that neutrinos have zero energy.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The Nucleus - Exercises [पृष्ठ ४४२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 24 The Nucleus
Exercises | Q 18 | पृष्ठ ४४२

संबंधित प्रश्न

 

(a) Write the basic nuclear process involved in the emission of β+ in a symbolic form, by a radioactive nucleus.

(b) In the reactions given below:

(i)`""_16^11C->_y^zB+x+v`

(ii)`""_6^12C+_6^12C->_a^20 Ne + _b^c He`

Find the values of x, y, and z and a, b and c.

 

Write symbolically the process expressing the β+ decay of `""_11^22Na`. Also write the basic nuclear process underlying this decay.


A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to a) 3.125%, b) 1% of its original value?


The normal activity of living carbon-containing matter is found to be about 15 decays per minute for every gram of carbon. This activity arises from the small proportion of radioactive `""_6^14"C"` present with the stable carbon isotope `""_6^12"C"`. When the organism is dead, its interaction with the atmosphere (which maintains the above equilibrium activity) ceases and its activity begins to drop. From the known half-life (5730 years) of `""_6^14"C"` and the measured activity, the age of the specimen can be approximately estimated. This is the principle of `""_6^14"C"` dating used in archaeology. Suppose a specimen from Mohenjodaro gives an activity of 9 decays per minute per gram of carbon. Estimate the approximate age of the Indus-Valley civilisation.


The radionuclide 11C decays according to 

\[\ce{^11_6C -> ^11_5B + e+ + \text{v}}\] : T1/2 = 20.3 min

The maximum energy of the emitted positron is 0.960 MeV.

Given the mass values: `"m"(""_6^11"C") = 11.011434 u and "m"(""_6^11"B") = 11.009305 "u"`

Calculate Q and compare it with the maximum energy of the positron emitted.


A radioactive nucleus 'A' undergoes a series of decays as given below:

The mass number and atomic number of A2 are 176 and 71 respectively. Determine the mass and atomic numbers of A4 and A.


Using the equation `N = N_0e^(-lambdat)` obtain the relation between half-life (T) and decay constant (`lambda`) of a radioactive substance.


(a) Derive the relation between the decay constant and half life of a radioactive substance. 
(b) A radioactive element reduces to 25% of its initial mass in 1000 years. Find its half life.


Two different radioactive elements with half lives T1 and T2 have N1 and N2 undecayed atoms respectively present at a given instant. Derive an expression for the ratio of their activities at this instant in terms of N1 and N2 ?


The radioactive isotope D decays according to the sequence

If the mass number and atomic number of D2 are 176 and 71 respectively, what is (i) the mass number (ii) atomic number of D?


Consider the situation of the previous problem. Suppose the production of the radioactive isotope starts at t = 0. Find the number of active nuclei at time t.


Obtain a relation between the half-life of a radioactive substance and decay constant (λ).


What is the amount of \[\ce{_27^60Co}\] necessary to provide a radioactive source of strength 10.0 mCi, its half-life being 5.3 years?


The isotope \[\ce{^57Co}\] decays by electron capture to \[\ce{^57Fe}\] with a half-life of 272 d. The \[\ce{^57Fe}\] nucleus is produced in an excited state, and it almost instantaneously emits gamma rays.
(a) Find the mean lifetime and decay constant for 57Co.
(b) If the activity of a radiation source 57Co is 2.0 µCi now, how many 57Co nuclei does the source contain?

c) What will be the activity after one year?


'Half-life' of a radioactive substance accounts for ______.


If 10% of a radioactive material decay in 5 days, then the amount of original material left after 20 days is approximately :


Suppose we consider a large number of containers each containing initially 10000 atoms of a radioactive material with a half life of 1 year. After 1 year ______.


Draw a graph showing the variation of decay rate with number of active nuclei.


Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is :

\[\ce{^38Sulphur ->[half-life][= 2.48h] ^{38}Cl ->[half-life][= 0.62h] ^38Air (stable)}\]

Assume that we start with 1000 38S nuclei at time t = 0. The number of 38Cl is of count zero at t = 0 and will again be zero at t = ∞ . At what value of t, would the number of counts be a maximum?


The half-life of `""_82^210Pb` is 22.3 y. How long will it take for its activity 0 30% of the initial activity?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×