हिंदी

Derive the Mathematical Expression for Law of Radioactive Decay for a Sample of a Radioactive Nucleus - Physics

Advertisements
Advertisements

प्रश्न

Derive the mathematical expression for law of radioactive decay for a sample of a radioactive nucleus

Deduce the expression, N = N0 e−λt, for the law of radioactive decay.

Derive the expression N = Noe-λt where symbols have their usual meanings

उत्तर

In any radioactive sample which undergoes α, β or γ-decay, it is found that the number of nuclei undergoing decay per unit time is proportional to the total number of nuclei in the sample.

If N is the number of nuclei in the sample and ΔN undergoes decay in time Δt, then we have

`(DeltaN)/(Deltat) propN`

`:.(DeltaN)/(Deltat)=lambdaN`

where λ is called the radioactive decay constant or disintegration constant.

The change in the number of nuclei in the sample is dN = −ΔN in time Δt, i.e. in the limit dt → 0. Thus, the rate of change of N is

`(dN)/dt= -lambdaN`

`:.(dN)/N = -lambdadt`

Now, integrating both the sides, we get

`int_(N_0)^N (dN)/N=-lambdaint_(t_0)^tdt`

∴ lnN - lnN0 = -λ(t-t0)

Here, N0 is the number of radioactive nuclei in the sample at some arbitrary time t0 and N is the number of radioactive nuclei at any subsequent time t. Setting t0 = 0 and rearranging, we get

`ln`

∴ N(t) = N0e-λt

This is the law of radioactive decay.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2012-2013 (March)

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

(a) Write the basic nuclear process involved in the emission of β+ in a symbolic form, by a radioactive nucleus.

(b) In the reactions given below:

(i)`""_16^11C->_y^zB+x+v`

(ii)`""_6^12C+_6^12C->_a^20 Ne + _b^c He`

Find the values of x, y, and z and a, b and c.

 

State the law of radioactive decay.


How is the mean life of a given radioactive nucleus related to the decay constant?


Write symbolically the process expressing the β+ decay of `""_11^22Na`. Also write the basic nuclear process underlying this decay.


Why is it found experimentally difficult to detect neutrinos in nuclear β-decay?


A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to a) 3.125%, b) 1% of its original value?


The normal activity of living carbon-containing matter is found to be about 15 decays per minute for every gram of carbon. This activity arises from the small proportion of radioactive `""_6^14"C"` present with the stable carbon isotope `""_6^12"C"`. When the organism is dead, its interaction with the atmosphere (which maintains the above equilibrium activity) ceases and its activity begins to drop. From the known half-life (5730 years) of `""_6^14"C"` and the measured activity, the age of the specimen can be approximately estimated. This is the principle of `""_6^14"C"` dating used in archaeology. Suppose a specimen from Mohenjodaro gives an activity of 9 decays per minute per gram of carbon. Estimate the approximate age of the Indus-Valley civilisation.


The radionuclide 11C decays according to 

\[\ce{^11_6C -> ^11_5B + e+ + \text{v}}\] : T1/2 = 20.3 min

The maximum energy of the emitted positron is 0.960 MeV.

Given the mass values: `"m"(""_6^11"C") = 11.011434 u and "m"(""_6^11"B") = 11.009305 "u"`

Calculate Q and compare it with the maximum energy of the positron emitted.


The Q value of a nuclear reaction \[\ce{A + b → C + d}\] is defined by

Q = [ mA+ mb− mC− md]cwhere the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.

\[\ce{^1_1H + ^3_1H -> ^2_1H + ^2_1H}\]

Atomic masses are given to be

`"m"(""_1^2"H")` = 2.014102 u

`"m"(""_1^3"H")` = 3.016049 u

`"m"(""_6^12"C")` = 12.000000 u

`"m"(""_10^20"Ne")` = 19.992439 u


The Q value of a nuclear reaction A + b → C + d is defined by

Q = [mA+ mb − mC − md]c2 where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.

\[\ce{^12_6C + ^12_6C ->^20_10Ne + ^4_2He}\]

Atomic masses are given to be

`"m"(""_1^2"H")` = 2.014102 u

`"m"(""_1^3"H")` = 3.016049 u

`"m"(""_6^12C)` = 12.000000 u

`"m"(""_10^20"Ne")` = 19.992439 u


A source contains two phosphorous radio nuclides `""_15^32"P"` (T1/2 = 14.3d) and `""_15^33"P"` (T1/2 = 25.3d). Initially, 10% of the decays come from `""_15^33"P"`. How long one must wait until 90% do so?


Under certain circumstances, a nucleus can decay by emitting a particle more massive than an α-particle. Consider the following decay processes:

\[\ce{^223_88Ra -> ^209_82Pb + ^14_6C}\]

\[\ce{^223_88 Ra -> ^219_86 Rn + ^4_2He}\]

Calculate the Q-values for these decays and determine that both are energetically allowed.


Represent Radioactive Decay curve using relation `N = N_o e^(-lambdat)` graphically


Using the equation `N = N_0e^(-lambdat)` obtain the relation between half-life (T) and decay constant (`lambda`) of a radioactive substance.


(a) Derive the relation between the decay constant and half life of a radioactive substance. 
(b) A radioactive element reduces to 25% of its initial mass in 1000 years. Find its half life.


Two different radioactive elements with half lives T1 and T2 have N1 and N2 undecayed atoms respectively present at a given instant. Derive an expression for the ratio of their activities at this instant in terms of N1 and N2 ?


A radioactive nucleus ‘A’ undergoes a series of decays according to the following scheme:

The mass number and atomic number of A are 180 and 72 respectively. What are these numbers for A4?


The radioactive isotope D decays according to the sequence

If the mass number and atomic number of D2 are 176 and 71 respectively, what is (i) the mass number (ii) atomic number of D?


In a radioactive decay, neither the atomic number nor the mass number changes. Which of the following particles is emitted in the decay?


A freshly prepared radioactive source of half-life 2 h emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is


The decay constant of a radioactive sample is λ. The half-life and the average-life of the sample are respectively


The masses of 11C and 11B are respectively 11.0114 u and 11.0093 u. Find the maximum energy a positron can have in the β*-decay of 11C to 11B.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)


The decay constant of 238U is 4.9 × 10−18 S−1. (a) What is the average-life of 238U? (b) What is the half-life of 238U? (c) By what factor does the activity of a 238U sample decrease in 9 × 109 years?


The half-life of 40K is 1.30 × 109 y. A sample of 1.00 g of pure KCI gives 160 counts s−1. Calculate the relative abundance of 40K (fraction of 40K present) in natural potassium.


Define the term 'decay constant' of a radioactive sample. The rate of disintegration of a given radioactive nucleus is 10000 disintegrations/s and 5,000 disintegrations/s after 20 hr. and 30 hr. respectively from start. Calculate the half-life and the initial number of nuclei at t= 0. 


Identify the nature of the radioactive radiations emitted in each step of the decay process given below.

`""_Z^A X -> _Z^A  _-1^-4 Y ->_Z^A  _-1^-4 W`


What is the amount of \[\ce{_27^60Co}\] necessary to provide a radioactive source of strength 10.0 mCi, its half-life being 5.3 years?


Disintegration rate of a sample is 1010 per hour at 20 hours from the start. It reduces to 6.3 x 109 per hour after 30 hours. Calculate its half-life and the initial number of radioactive atoms in the sample.


The isotope \[\ce{^57Co}\] decays by electron capture to \[\ce{^57Fe}\] with a half-life of 272 d. The \[\ce{^57Fe}\] nucleus is produced in an excited state, and it almost instantaneously emits gamma rays.
(a) Find the mean lifetime and decay constant for 57Co.
(b) If the activity of a radiation source 57Co is 2.0 µCi now, how many 57Co nuclei does the source contain?

c) What will be the activity after one year?


Two radioactive materials X1 and X2 have decay constants 10λ and λ respectively. If initially, they have the same number of nuclei, then the ratio of the number of nuclei of X1 to that of X2 will belie after a time.


A radioactive element disintegrates for an interval of time equal to its mean lifetime. The fraction that has disintegrated is ______


Which one of the following nuclei has shorter meant life?

 


After 1 hour, `(1/8)^"th"` of the initial mass of a certain radioactive isotope remains undecayed. The half-life of the isotopes is ______.


What percentage of radioactive substance is left after five half-lives?


Two electrons are ejected in opposite directions from radioactive atoms in a sample of radioactive material. Let c denote the speed of light. Each electron has a speed of 0.67 c as measured by an observer in the laboratory. Their relative velocity is given by ______.


The half-life of a radioactive nuclide is 20 hrs. The fraction of the original activity that will remain after 40 hrs is ______.


The half-life of the radioactive substance is 40 days. The substance will disintegrate completely in


Suppose we consider a large number of containers each containing initially 10000 atoms of a radioactive material with a half life of 1 year. After 1 year ______.


When a nucleus in an atom undergoes a radioactive decay, the electronic energy levels of the atom ______.


The variation of decay rate of two radioactive samples A and B with time is shown in figure.

Which of the following statements are true?

  1. Decay constant of A is greater than that of B, hence A always decays faster than B.
  2. Decay constant of B is greater than that of A but its decay rate is always smaller than that of A.
  3. Decay constant of A is greater than that of B but it does not always decay faster than B.
  4. Decay constant of B is smaller than that of A but still its decay rate becomes equal to that of A at a later instant.

Draw a graph showing the variation of decay rate with number of active nuclei.


Which sample, A or B shown in figure has shorter mean-life?


Consider a radioactive nucleus A which decays to a stable nucleus C through the following sequence:

A→B→C

Here B is an intermediate nuclei which is also radioactive. Considering that there are N0 atoms of A initially, plot the graph showing the variation of number of atoms of A and B versus time.


A piece of wood from the ruins of an ancient building was found to have a 14C activity of 12 disintegrations per minute per gram of its carbon content. The 14C activity of the living wood is 16 disintegrations per minute per gram. How long ago did the tree, from which the wooden sample came, die? Given half-life of 14C is 5760 years.


Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is :

\[\ce{^38Sulphur ->[half-life][= 2.48h] ^{38}Cl ->[half-life][= 0.62h] ^38Air (stable)}\]

Assume that we start with 1000 38S nuclei at time t = 0. The number of 38Cl is of count zero at t = 0 and will again be zero at t = ∞ . At what value of t, would the number of counts be a maximum?


The activity R of an unknown radioactive nuclide is measured at hourly intervals. The results found are tabulated as follows:

t (h) 0 1 2 3 4
R (MBq) 100 35.36 12.51 4.42 1.56
  1. Plot the graph of R versus t and calculate the half-life from the graph.
  2. Plot the graph of ln `(R/R_0)` versus t and obtain the value of half-life from the graph.

The radioactivity of an old sample of whisky due to tritium (half-life 12.5 years) was found to be only about 4% of that measured in a recently purchased bottle marked 10 years old. The age of a sample is ______ years.


The half-life of `""_82^210Pb` is 22.3 y. How long will it take for its activity 0 30% of the initial activity?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×