Advertisements
Advertisements
Question
Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is :
\[\ce{^38Sulphur ->[half-life][= 2.48h] ^{38}Cl ->[half-life][= 0.62h] ^38Air (stable)}\]
Assume that we start with 1000 38S nuclei at time t = 0. The number of 38Cl is of count zero at t = 0 and will again be zero at t = ∞ . At what value of t, would the number of counts be a maximum?
Solution
\[\ce{^38S ->[][2.48 h] ^38Cl ->[][0.62h] 38Ar}\]
At time t, Let 38S have N1(t ) active nuclei and 38Cl have N2(t) active nuclei.
`(dN_1)/(dt) = -λ_1N_1` = rate of formation of Cl38.
Also `(dN_2)/(dt) = - λ_1N_2 + λ_1N_1`
But `N_1 = N_0e^(-λ_1t)`
`(dN_2)/(dt) = - λ_1 N_0e^(-λ_1t) - λ_2N_2`
Multiplying by `e^(λ_2t) dt` and rearranging
`e^(λ_2t) dN_2 + λ_2N_2e^(λ_2t) dt = λ_1N_0e^((λ_2 - λ_1)t) dt`
Integrating both sides.
`N_2e^(λ_2t) = (N_0λ_1)/(λ_2 - λ_1) e^((λ_2 - λ_1)t) + C`
Since at t = 0, N2 = 0, C = `-(N_0λ_1)/(λ_2 - λ_1)`
∴ `N_2e^(λ_2t) = (N_0λ_1)/(λ_2 - λ_1) e^((λ_2 - λ_1)t) + C`
`N_2 = (N_0λ_1)/(λ_2 - λ_1) (e^(-λ.t) - e^(-λ_2t))`
For maximum count, `(dN_2)/(dt)` = 0
On solving, `t = (In λ_1/λ_2)/(λ_1 - λ_2)`
= In `(2.48/0.62)/(2.48 - 0.62)`
= `(In 4)/1.86`
= `(2.303 log 4)/1.86`
= 0.745 s.
APPEARS IN
RELATED QUESTIONS
(a) Write the basic nuclear process involved in the emission of β+ in a symbolic form, by a radioactive nucleus.
(b) In the reactions given below:
(i)`""_16^11C->_y^zB+x+v`
(ii)`""_6^12C+_6^12C->_a^20 Ne + _b^c He`
Find the values of x, y, and z and a, b and c.
How is the mean life of a given radioactive nucleus related to the decay constant?
The Q value of a nuclear reaction A + b → C + d is defined by
Q = [mA+ mb − mC − md]c2 where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.
\[\ce{^12_6C + ^12_6C ->^20_10Ne + ^4_2He}\]
Atomic masses are given to be
`"m"(""_1^2"H")` = 2.014102 u
`"m"(""_1^3"H")` = 3.016049 u
`"m"(""_6^12C)` = 12.000000 u
`"m"(""_10^20"Ne")` = 19.992439 u
A source contains two phosphorous radio nuclides `""_15^32"P"` (T1/2 = 14.3d) and `""_15^33"P"` (T1/2 = 25.3d). Initially, 10% of the decays come from `""_15^33"P"`. How long one must wait until 90% do so?
Using the equation `N = N_0e^(-lambdat)` obtain the relation between half-life (T) and decay constant (`lambda`) of a radioactive substance.
28Th emits an alpha particle to reduce to 224Ra. Calculate the kinetic energy of the alpha particle emitted in the following decay:
`""^228"Th" → ""^224"Ra"^(∗) + alpha`
`""^224"Ra"^(∗) → ""^224"Ra" + γ (217 "keV")`.
Atomic mass of 228Th is 228.028726 u, that of 224Ra is 224.020196 u and that of `""_2^4H` is 4.00260 u.
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)
Calculate the maximum kinetic energy of the beta particle emitted in the following decay scheme:
12N → 12C* + e+ + v
12C* → 12C + γ (4.43MeV).
The atomic mass of 12N is 12.018613 u.
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)
The decay constant of `""_80^197`Hg (electron capture to `""_79^197`Au) is 1.8 × 10−4 S−1. (a) What is the half-life? (b) What is the average-life? (c) How much time will it take to convert 25% of this isotope of mercury into gold?
When charcoal is prepared from a living tree, it shows a disintegration rate of 15.3 disintegrations of 14C per gram per minute. A sample from an ancient piece of charcoal shows 14C activity to be 12.3 disintegrations per gram per minute. How old is this sample? Half-life of 14C is 5730 y.
Identify the nature of the radioactive radiations emitted in each step of the decay process given below.
`""_Z^A X -> _Z^A _-1^-4 Y ->_Z^A _-1^-4 W`