हिंदी

The angle between the two altitudes of a parallelogram through the same vertex of an obtuse angle of the parallelogram is 30°. The measure of the obtuse angle is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The angle between the two altitudes of a parallelogram through the same vertex of an obtuse angle of the parallelogram is 30°. The measure of the obtuse angle is ______.

विकल्प

  • 100°

  • 150°

  • 105°

  • 120°

MCQ
रिक्त स्थान भरें

उत्तर

The angle between the two altitudes of a parallelogram through the same vertex of an obtuse angle of the parallelogram is 30°. The measure of the obtuse angle is 150°.

Explanation:

Let EC and FC be altitudes and ∠ECF = 30°.

Let ∠EDC = x = ∠FBC

So, ∠ECD = 90° – x and ∠BCF = 90° – x

So, by property of the parallelogram,

∠ADC + ∠DCB = 180°

∠ADC + (∠ECD + ∠ECF + ∠BCF) = 180°

⇒ x + 90° – x + 30° + 90° – x = 180°

⇒ – x = 180° – 210° = – 30°

⇒ x = 30°

Hence, ∠DCB = 30° + 60° + 60° = 150°

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Understanding Quadrilaterals and Practical Geometry - Exercise [पृष्ठ १४८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 8
अध्याय 5 Understanding Quadrilaterals and Practical Geometry
Exercise | Q 34 | पृष्ठ १४८

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×