हिंदी

The fourth vertex D of a parallelogram ABCD, whose three vertices are A(–2, 3), B(6, 7) and C(8, 3), is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The fourth vertex D of a parallelogram ABCD, whose three vertices are A(–2, 3), B(6, 7) and C(8, 3), is ______.

विकल्प

  • (0, 1)

  • (0, –1)

  • (–1, 0)

  • (1, 0)

MCQ
रिक्त स्थान भरें

उत्तर

The fourth vertex D of a parallelogram ABCD, whose three vertices are A(–2, 3), B(6, 7), and C(8, 3) is (0, –1).

Explanation:

Let the fourth vertex of the parallelogram, D ≡ (x4, y4) and L, M be the middle points of AC and BD, respectively,

Then, `L ≡ ((-2 + 8)/2, (3 + 3)/2) ≡ (3, 3)` and `M ≡ ((6 + x_4)/2, (7 + y_4)/2)`  ...`["Since mid-point of a line segment having points"  (x_1, y_1)  "and"  (x_2, y_2) = ((x_1 + x_2)/2, (y_1 + y_2)/2)]`


Since, ABCD is a parallelogram, therefore diagonals AC and BD will bisect each other.

Hence, L and M are the same points.

∴ 3 = `(6 + x_4)/2` and 3 = `(7 + y_4)/2`

⇒ 6 = 6 + x4 and 6 = 7 + y4

⇒ x4 = 0 and y4 = 6 – 7

∴ x4 = 0 and y4 = –1

Hence, the fourth vertex of the parallelogram is D = (x4, y4) = (0, –1).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Coordinate Geometry - Exercise 7.1 [पृष्ठ ७९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 7 Coordinate Geometry
Exercise 7.1 | Q 11 | पृष्ठ ७९

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×