हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएसएसएलसी (अंग्रेजी माध्यम) कक्षा ९

The mid-point of the sides of a triangle are (2, 4), (−2, 3) and (5, 2). Find the coordinates of the vertices of the triangle - Mathematics

Advertisements
Advertisements

प्रश्न

The mid-point of the sides of a triangle are (2, 4), (−2, 3) and (5, 2). Find the coordinates of the vertices of the triangle

योग

उत्तर


Let the vertices of the ΔABC be A(x1 y1), B(x2, y2) and C(x3, y3)

Mid−point of AB = `((x_1 + x_2)/2, (y_1 + y_2)/2)`

(2, 4) = `((x_1 + x_2)/2, (y_1 + y_2)/2)`

`(x_1 + x_2)/2` = 2

⇒ x1 + x2 = 4 → (1)

`(y_1 + y_2)/2` = 4

⇒ y1 + y2 = 8 → (2)

Mid−point of BC = `((x_2 + x_3)/2, (y_2 + y_3)/2)`

(−2, 3) = `((x_2 + x_3)/2, (y_2 + y_3)/2)`

`(x_2 + x_3)/2` = − 2

⇒ x2 + x3 = − 4 → (3)

`(y_2 + y_3)/2` = 3

⇒ y2 + y3 = 6 → (4)

Mid−point of AC = `((x_1 + x_3)/2, (y_1 + y_3)/2)`

(5, 2) = `((x_1 + x_3)/2, (y_1 + y_3)/2)`

`(x_1 + x_3)/2` = 5

⇒ x1 + x3 = 10 → (5)

`(y_1 + y_3)/2` = 2

⇒ y1 + y3 = 4 → (6)

By adding (1) + (3) + (5) we get

2x1 + 2x2 + 2x3 = 4 – 4 + 10

2(x1 + x2 + x3) = 10

⇒ x1 + x2 + x3 = 5

From (1) x1 + x2 = 4

⇒ 4 + x3 = 5

x3 = 5 – 4 = 1

∴ The vertices of the ΔABC are A(9, 3) B(– 5, 5), C(1, 1)

From (3) x2 + x3 = – 4

⇒ x1 + (– 4) = 5

x1 = 5 + 4 = 9

From (5) ⇒ x1 + x3 = 8

x2 + 10 = 5

x2 = 5 – 10 = – 5

∴ x1 = 9, x2 = – 5, x3 = 1

By adding (2) + (4) + (6) we get

2y1 + 2y2 + 2y3 = 8 + 6 + 4

2(y1 +y2 + y3) = 18

⇒ y1 + y2 + y3 = 9

From (2) ⇒ y1 + y2 = 8

8 + y3 = 9

⇒ y3 = 9 – 8

= 1

From (4)

y2 + y3 = 6

⇒ y1 + 6 = 9

y1 = 9 – 6

= 3

From (6)

y1 + y3 = 4

⇒ y2 + 4

= 9

y2 = 9 – 4

= 5

∴ y1 = 3, y2 = 5, y3 = 1

shaalaa.com
The Mid-point of a Line Segment (Mid-point Formula)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Coordinate Geometry - Exercise 5.3 [पृष्ठ २०८]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 9 TN Board
अध्याय 5 Coordinate Geometry
Exercise 5.3 | Q 4 | पृष्ठ २०८

संबंधित प्रश्न

Points P(a, −4), Q(−2, b) and R(0, 2) are collinear. If Q lies between P and R, such that PR = 2QR, calculate the values of a and b.


A(5, x), B(−4, 3) and C(y, –2) are the vertices of the triangle ABC whose centroid is the origin. Calculate the values of x and y.


In the following example find the co-ordinate of point A which divides segment PQ in the ratio b.
P(–3, 7), Q(1, –4), = 2 : 1


In the following example find the co-ordinate of point A which divides segment PQ in the ratio b.

P(2, 6), Q(–4, 1), = 1 : 2


Find the midpoint of the line segment joining the following pair of point :

( -3, 5) and (9, -9) 


A(6, -2), B(3, -2) and C(S, 6) are the three vertices of a parallelogram ABCD. Find the coordinates of the fourth vertex c. 


The midpoints of three sides of a triangle are (1, 2), (2, -3) and (3, 4). Find the centroid of the triangle. 


Point P is midpoint of segment AB where A(– 4, 2) and B(6, 2), then the coordinates of P are ______


Find coordinates of the midpoint of a segment joining point A(–1, 1) and point B(5, –7)

Solution: Suppose A(x1, y1) and B(x2, y2)

x1 = –1, y1 = 1 and x2 = 5, y2 = –7

Using midpoint formula,

∴ Coordinates of midpoint of segment AB 

= `((x_1 + x_2)/2, (y_1+ y_2)/2)`

= `(square/2, square/2)`

∴ Coordinates of the midpoint = `(4/2, square/2)`

∴ Coordinates of the midpoint = `(2, square)`


Point M (2, b) is the mid-point of the line segment joining points P (a, 7) and Q (6, 5). Find the values of ‘a’ and ‘b’.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×