English
Tamil Nadu Board of Secondary EducationSSLC (English Medium) Class 9

The mid-point of the sides of a triangle are (2, 4), (−2, 3) and (5, 2). Find the coordinates of the vertices of the triangle - Mathematics

Advertisements
Advertisements

Question

The mid-point of the sides of a triangle are (2, 4), (−2, 3) and (5, 2). Find the coordinates of the vertices of the triangle

Sum

Solution


Let the vertices of the ΔABC be A(x1 y1), B(x2, y2) and C(x3, y3)

Mid−point of AB = `((x_1 + x_2)/2, (y_1 + y_2)/2)`

(2, 4) = `((x_1 + x_2)/2, (y_1 + y_2)/2)`

`(x_1 + x_2)/2` = 2

⇒ x1 + x2 = 4 → (1)

`(y_1 + y_2)/2` = 4

⇒ y1 + y2 = 8 → (2)

Mid−point of BC = `((x_2 + x_3)/2, (y_2 + y_3)/2)`

(−2, 3) = `((x_2 + x_3)/2, (y_2 + y_3)/2)`

`(x_2 + x_3)/2` = − 2

⇒ x2 + x3 = − 4 → (3)

`(y_2 + y_3)/2` = 3

⇒ y2 + y3 = 6 → (4)

Mid−point of AC = `((x_1 + x_3)/2, (y_1 + y_3)/2)`

(5, 2) = `((x_1 + x_3)/2, (y_1 + y_3)/2)`

`(x_1 + x_3)/2` = 5

⇒ x1 + x3 = 10 → (5)

`(y_1 + y_3)/2` = 2

⇒ y1 + y3 = 4 → (6)

By adding (1) + (3) + (5) we get

2x1 + 2x2 + 2x3 = 4 – 4 + 10

2(x1 + x2 + x3) = 10

⇒ x1 + x2 + x3 = 5

From (1) x1 + x2 = 4

⇒ 4 + x3 = 5

x3 = 5 – 4 = 1

∴ The vertices of the ΔABC are A(9, 3) B(– 5, 5), C(1, 1)

From (3) x2 + x3 = – 4

⇒ x1 + (– 4) = 5

x1 = 5 + 4 = 9

From (5) ⇒ x1 + x3 = 8

x2 + 10 = 5

x2 = 5 – 10 = – 5

∴ x1 = 9, x2 = – 5, x3 = 1

By adding (2) + (4) + (6) we get

2y1 + 2y2 + 2y3 = 8 + 6 + 4

2(y1 +y2 + y3) = 18

⇒ y1 + y2 + y3 = 9

From (2) ⇒ y1 + y2 = 8

8 + y3 = 9

⇒ y3 = 9 – 8

= 1

From (4)

y2 + y3 = 6

⇒ y1 + 6 = 9

y1 = 9 – 6

= 3

From (6)

y1 + y3 = 4

⇒ y2 + 4

= 9

y2 = 9 – 4

= 5

∴ y1 = 3, y2 = 5, y3 = 1

shaalaa.com
The Mid-point of a Line Segment (Mid-point Formula)
  Is there an error in this question or solution?
Chapter 5: Coordinate Geometry - Exercise 5.3 [Page 208]

APPEARS IN

Samacheer Kalvi Mathematics [English] Class 9 TN Board
Chapter 5 Coordinate Geometry
Exercise 5.3 | Q 4 | Page 208
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×