हिंदी

Two isosceles triangles have equal vertical angles. Show that the triangles are similar. If the ratio between the areas of these two triangles is 16 : 25 - Mathematics

Advertisements
Advertisements

प्रश्न

Two isosceles triangles have equal vertical angles. Show that the triangles are similar. If the ratio between the areas of these two triangles is 16 : 25, find the ratio between their corresponding altitudes.

योग

उत्तर


Let ABC and PQR be two isosceles triangles.

Then, `(AB)/(AC) = 1/1` and `(PQ)/(PR) = 1/1`

Also, ∠A = ∠P  ...(Given)

∴ ΔABC ∼ ΔPQR  ...(SAS similarity)

Let AD and PS be the altitude in the respective triangles.

We know that the ratio of areas of two similar triangles is equal to the square of their corresponding altitudes. 

`(Ar(ΔABC))/(Ar(ΔPQR)) = ((AD)/(PS))^2`

`(16)/(25) = ((AD)/(PS))^2`

`(AD)/(PS) = 4/5`

shaalaa.com
Axioms of Similarity of Triangles
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Similarity (With Applications to Maps and Models) - Exercise 15 (E) [पृष्ठ २३१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 15 Similarity (With Applications to Maps and Models)
Exercise 15 (E) | Q 22 | पृष्ठ २३१

संबंधित प्रश्न

In ∆ ABC, ∠B = 2 ∠C and the bisector of angle B meets CA at point D. Prove that:
(i) ∆ ABC and ∆ ABD are similar,
(ii) DC: AD = BC: AB


In ∆PQR, ∠Q = 90° and QM is perpendicular to PR. Prove that:

  1. PQ2 = PM × PR
  2. QR2 = PR × MR
  3. PQ2 + QR2 = PR2

In ∆ABC, ∠B = 90° and BD ⊥ AC.

  1. If CD = 10 cm and BD = 8 cm; find AD.
  2. If AC = 18 cm and AD = 6 cm; find BD.
  3. If AC = 9 cm and AB = 7 cm; find AD.

In the given figure, P is a point on AB such that AP : PB = 4 : 3. PQ is parallel to AC.

  1. Calculate the ratio PQ : AC, giving reason for your answer.
  2. In triangle ARC, ∠ARC = 90° and in triangle PQS, ∠PSQ = 90°. Given QS = 6 cm, calculate the length of AR.

In the figure, given below, ABCD is a parallelogram. P is a point on BC such that BP : PC = 1 : 2. DP produced meets AB produces at Q. Given the area of triangle CPQ = 20 cm2.


Calculate:

  1. area of triangle CDP,
  2. area of parallelogram ABCD.

In the following figure, AD and CE are medians of ΔABC. DF is drawn parallel to CE. Prove that :

  1. EF = FB,
  2. AG : GD = 2 : 1


In the given figure, triangle ABC is similar to triangle PQR. AM and PN are altitudes whereas AX and PY are medians.
Prove that : `(AM)/(PN)=(AX)/(PY)`


On a map, drawn to a scale of 1 : 20000, a rectangular plot of land ABCD has AB = 24 cm and BC = 32 cm. Calculate : 

  1. the diagonal distance of the plot in kilometer.
  2. the area of the plot in sq. km.

In ΔABC, ∠ACB = 90° and CD ⊥ AB. 

Prove that : `(BC^2)/(AC^2)=(BD)/(AD)`


In the given figure, ABC is a right angled triangle with ∠BAC = 90°.

  1. Prove that : ΔADB ∼ ΔCDA.
  2. If BD = 18 cm and CD = 8 cm, find AD.
  3. Find the ratio of the area of ΔADB is to area of ΔCDA.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×