Advertisements
Advertisements
प्रश्न
यदि द्विघात बहुपद् (k − 1)x2 + kx + 1 के शून्यकों में से एक शून्यक –3 है, तो k का मान है
विकल्प
`4/3`
`(-4)/3`
`2/3`
`(-2)/3`
उत्तर
यदि द्विघात बहुपद् (k − 1)x2 + kx + 1 के शून्यकों में से एक शून्यक –3 है, तो k का मान `bbunderline(4/3)` है।
स्पष्टीकरण:
प्रश्न के अनुसार,
–3 द्विघात बहुपद (k – 1)x2 + kx + 1 के शून्यकों में से एक है।
दिए गए बहुपद में – 3 प्रतिस्थापित करने पर,
(k – 1)(–3)2 + k(–3) + 1 = 0
(k – 1)9 + k(–3) + 1 = 0
9k – 9 – 3k + 1 = 0
6k – 8 = 0
k = `8/6`
इसलिए, k = `4/3`
APPEARS IN
संबंधित प्रश्न
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
4s2 - 4s + 1
एक त्रिघात बहुपद प्राप्त कीजिए जिसके शून्यकों का योग, दो शून्यकों को एक साथ लेकर उनके गुणनफलों का योग तथा तीनों शून्यकों के गुणनफल क्रमशः 2, -7, -14 हों।
शून्यक –2 और 5 वाले बहुपदों की संख्या है
यदि x2 + ax + b के रूप के एक द्विधात बहुपद् का एक शून्यक दूसरे शून्यक का ऋ्रणात्मक हो, तो ______।
क्या किसी विषम पूर्णांक k >1 के लिए, द्विघात बहुपद x2 + kx + k के बराबर शून्यक हो सकते हैं?
यदि एक द्विघात बहुपद ax2 + bx + c के दोनों शून्यक धनात्मक हैं, तो a, b और c में से सभी का समान चिन्ह होता हैं।
यदि एक त्रिघात बहुपद के दो शून्यकों में से प्रत्येक शून्य है, तो इसके रैखिक और अचर पद नहीं हो सकते।
यदि एक त्रिघात बहुपद के सभी शून्यक ऋणात्मक हैं, तो इस बहुपद के सभी गुणांक और अचर पद एक ही चिह्न के होते हैं।
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
4x2 – 3x – 1
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
t3 – 2t2 – 15t