Advertisements
Advertisements
प्रश्न
यदि त्रिघात बहुपद x3 + ax2 + bx + c का एक शून्यक –1 है, तो अन्य दोनों शून्यकों का गुणनफल है ______।
विकल्प
b – a + 1
b – a – 1
a – b + 1
a – b –1
उत्तर
यदि त्रिघात बहुपद x3 + ax2 + bx + c का एक शून्यक –1 है, तो अन्य दोनों शून्यकों का गुणनफल है b – a + 1।
स्पष्टीकरण:
माना p(x) = x3 + ax2 + bx + c
माना a, p और y दिए गए घन बहुपद p(x) के शून्यक हैं।
∴ α = –1 ......[दिया गया]
और p(−1) = 0
⇒ (–1)3 + a(–1)2 + b(–1) + c = 0
⇒ –1 + a – b + c = 0
⇒ c = 1 – a + b ......(i)
हम वह जानते हैं,
सभी शून्यों का गुणनफल = `(-1)^3`
`"स्थिर पद"/("का गुणांक" x^3) = - c/1`
αβγ = – c
⇒ (–1)βγ = −c .......[∴ α = –1]
⇒ βγ = c
⇒ βγ = 1 – a + b ......[समीकरण (i) से]
अतः अन्य दो जड़ों का गुणनफल 1 – a + b है।
वैकल्पिक विधि:
चूँकि −1 घन बहुपद f(x) = x2+ ax2 + bx + c के शून्यकों में से एक है।
यानी, (x + 1) f(x) का एक गुणनखंड है।
अब, विभाजन एल्गोरिथ्म का उपयोग करके,
`x^2 + (a - 1)x + (b - a + 1)`
`x + 1")"overline(x^3 + ax^2 + bx + c)`
x3 + x2
(a – 1)x2 + bx
(a – 1)x2 + (a – 1)x
(b – a + 1)x + c
(b – a + 1)x (b – a + 1)
(c – b + a – 1)
⇒ x3 + ax2 + bx + c = (x + 1)x {x2 + (a – 1)x + (b – a + 1) > + (c – b + a – 1)
⇒ x3 + ax2 + bx + (b – a + 1) = (x + 1){x2 + (a – 1)x + (b – a + 1}}
मान लीजिए a और p दिए गए बहुपद के अन्य दो शून्यक हैं।
सभी शून्यों का गुणनफल = `(-1)alpha*beta`
= `(-"स्थिर पद")/("गुणांक" x^3)`
⇒ `- alpha*beta = (-(b - a + 1))/1`
⇒ `alpha beta` = – a + b + 1
अतः अन्य दो जड़ों का आवश्यक गुणनफल (–a + b + 1) है।
APPEARS IN
संबंधित प्रश्न
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
1, 1
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
`-1/4, 1/4`
शून्यक –3 और 4 वाला द्विघात बहुपद है
शून्यक –2 और 5 वाले बहुपदों की संख्या है
त्रिघात बहुपद ax3 + bx2 + cx + d का एक शून्यक 0 दिया हुआ है। अन्य दोनों शून्यकों का गुणनफल है
यदि एक द्विघात बहुपद ax2 + bx + c के दोनों शून्यक धनात्मक हैं, तो a, b और c में से सभी का समान चिन्ह होता हैं।
यदि एक त्रिघात बहुपद के दो शून्यकों में से प्रत्येक शून्य है, तो इसके रैखिक और अचर पद नहीं हो सकते।
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`(-8)/3, 4/3`
त्रिघात बहुपद `6x^3 + sqrt2x^2 - 10x - 4sqrt2` का एक शून्यक `sqrt2` दिया है। इसके अन्य दो शून्यक ज्ञात कीजिए।