मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Block of Mass 2 Kg Kept at Rest on an Inclined Plane of Inclination 37° is Pulled up Plane by Applying a Constant Force of 20 N Parallel to Incline. Find the One Second Applied Force is 40 J. - Physics

Advertisements
Advertisements

प्रश्न

A block of mass 2 kg kept at rest on an inclined plane of inclination 37° is pulled up the plane by applying a constant force of 20 N parallel to the incline. The force acts for one second. Find the work done by the force of gravity in that one second if the work done by the applied force is 40 J.

बेरीज

उत्तर

If \[W = 40 J\]

\[S = \frac{W}{F} = \frac{40}{20} = 2 \text{ m }\]

\[h = 2 \sin 37^\circ= 1 . 2 \text{ m } \]

So, work done

\[\text{ W = - mgh } \]

\[ = - 20 \times 1 . 2 = - 24 J\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Work and Energy - Exercise [पृष्ठ १३३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 8 Work and Energy
Exercise | Q 16.2 | पृष्ठ १३३

संबंधित प्रश्‍न

A body constrained to move along the z-axis of a coordinate system is subject to a constant force F given by

`F = -hati+2hatj+3hatkN`

Where `hati,hatj,hatk` are unit vectors along the x-, y- and z-axis of the system respectively. What is the work done by this force in moving the body a distance of 4 m along the z-axis ?


When you hold a pen and write on your notebook, what kind of force is exerted by you on the pen? By the pen on the notebook? By you on the notebook?


Suppose the magnitude of Nuclear force between two protons varies with the distance between them as shown in figure. Estimate the ratio "Nuclear force/Coulomb force" for
(a) x = 8 fm
(b) x = 4 fm
(c) x = 2 fm
(d) x = 1 fm (1 fm = 10 −15m).


List all the forces acting on the block B in figure.


Figure shows a cart. Complete the table shown below.

Force on Force by Nature of the Force Direction
Cart

1
2
3
:

   
Horse

1
2
3
:

   
Driver

1
2
3
:

   

When Neils Bohr shook hand with Werner Heisenberg, what kind of force they exerted ?


Let E, G and N represent the magnitudes of electromagnetic gravitational and nuclear forces between two electrons at a given separation. Then


A proton exerts a force on a proton which is

(a) gravitational
(b) electromagnetic
(c) nuclear
(d) weak


Mark the correct statements :

(a) The nuclear force between two protons is always greater than the electromagnetic force between them.
(b) The electromagnetic force between two protons is always greater than the gravitational force between them.
(c) The gravitational force between two protons may be greater than the nuclear force between them.
(d) Electromagnetic force between two protons may be greater than the nuclear force acting between them.


Which of the following systems may be adequately described by classical physics ?

(a) motion of a cricket ball
(b) motion of a dust particle
(c) a hydrogen atom
(d) a neutron changing to a proton.


The force with which the earth attracts an object is called the weight of the object. Calculate the weight of the moon from the following data : The universal constant of gravitation G = 6.67 × 11−11 N−m2/kg2, mass of the moon = 7.36 × 1022 kg, mass of the earth = 6 × 1024 kg and the distance between the earth and the moon = 3.8 × 105 km. 


No work is done by a force on an object if

(a) the force is always perpendicular to its velocity
(b) the force is always perpendicular to its acceleration
(c) the object is stationary but the point of application of the force moves on the object
(d) the object moves in such a way that the point of application of the force remains fixed.


Find the average frictional force needed to stop a car weighing 500 kg at a distance of 25 m if the initial speed is 72 km/h.


A particle of mass m moves on a straight line with its velocity varying with the distance travelled, according to the equation  \[\nu = a\sqrt{x}\] , where a is a constant. Find the total work done by all the forces during a displacement from \[x = 0 \text{ to } x - d\] .

 

A block of mass 2 kg kept at rest on an inclined plane of inclination 37° is pulled up the plane by applying a constant force of 20 N parallel to the incline. The force acts for one second.  Find the kinetic energy of the block at the instant the force ceases to act. Take g = 10 m/s2.


A 250 g block slides on a rough horizontal table. Find the work done by the frictional force in bringing the block to rest if it is initially moving at a speed of 40 cm/s. If the friction coefficient between the table and the block is 0⋅1, how far does the block move before coming to rest?


In a children's park, there is a slide which has a total length of 10 m and a height of 8⋅0 m . A vertical ladder is provided to reach the top. A boy weighing 200 N climbs up the ladder to the top of the slide and slides down to the ground. The average friction offered by the slide is three tenth of his weight. Find (a) the work done by the ladder on the boy as he goes up; (b) the work done by the slide on the boy as he comes down. Neglect any work done by forces inside the body of the boy


A uniform chain of mass m and length l overhangs a table with its two third part on the table. Find the work to be done by a person to put the hanging part back on the table.

 

A block of mass 1 kg is pushed up a surface inclined to horizontal at an angle of 30° by a force of 10 N parallel to the inclined surface (Figure). The coefficient of friction between block and the incline is 0.1. If the block is pushed up by 10 m along the incline, calulate

  1. work done against gravity
  2. work done against force of friction
  3. increase in potential energy
  4. increase in kinetic energy
  5. work done by applied force.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×