मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Cylindrical Vessel, Whose Diameter and Height Both Are Equal to 30 Cm, is Placed on a Horizontal Surface and a Small Particle P is Placed in It at a Distance of 5.0 - Physics

Advertisements
Advertisements

प्रश्न

A cylindrical vessel, whose diameter and height both are equal to 30 cm, is placed on a horizontal surface and a small particle P is placed in it at a distance of 5.0 cm from the centre. An eye is placed at a position such that the edge of the bottom is just visible (see figure). The particle P is in the plane of drawing. Up to what minimum height should water be poured in the vessel to make the particle P visible?

बेरीज

उत्तर

Given,
Diameter and height (h) of the cylindrical vessel = 30 cm
Therefore, its radius (r) = 15 cm
We know the refractive index of water (μw) = 1.33 
\[= \frac{4}{3}\] 

Using Snell's law,
\[\frac{\sin i}{\sin r} = \frac{1}{\mu_w}\]
\[\frac{\sin i}{\sin r} = \frac{3}{4}\]
\[As r = 45^\circ \]
\[ \Rightarrow \sin i = \frac{3}{4\sqrt{2}}\]
Point P will be visible when the refracted ray makes an angle of 45˚ at the point of refraction.
Let be the distance of point P from X.

\[\tan  45^\circ= \frac{x + 10}{d}\] 

\[ \Rightarrow d = x + 10           .  .  . (i)\] 

\[and  \] 

\[\tan  i = \frac{x}{d}\] 

\[ \Rightarrow \frac{3}{\sqrt{23}} = \frac{d - 10}{d}  \left( \because \sin  i = \frac{3}{4\sqrt{2}} \Rightarrow \tan  i = \frac{3}{\sqrt{23}} \right)\] 

\[ \Rightarrow \frac{3}{\sqrt{23}} - 1 = \frac{- 10}{d}\] 

\[ \Rightarrow d = \frac{\sqrt{23} \times 10}{\sqrt{23} - 3}\] 

\[d = 26 . 7  cm\]
Hence, the required minimum height of water = 26.7 cm

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Geometrical Optics - Exercise [पृष्ठ ४१४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 18 Geometrical Optics
Exercise | Q 24 | पृष्ठ ४१४

संबंधित प्रश्‍न

Fill in the blank:

Very fine particles mainly scatter ………… colored light.


Why can’t we see clearly through fog?


 Write two points of difference between the phenomena of interference and diffraction.


Describe briefly using a diagram how sunlight is polarised ?


A concave mirror having a radius of curvature 40 cm is placed in front of an illuminated point source at a distance of 30 cm from it. Find the location of the image.


A concave mirror forms an image of 20 cm high object on a screen placed 5.0 m away from the mirror. The height of the image is 50 cm. Find the focal length of the mirror and the distance between the mirror and the object.

 


A point source S is placed midway between two converging mirrors having equal focal length f as shown in figure. Find the values of d for which only one image is formed.


An optical fibre (μ = 1.72) is surrounded by a glass coating (μ = 1.50). Find the critical angle for total internal reflection at the fibre-glass interface.


A container contains water up to a height of 20 cm and there is a point source at the centre of the bottom of the container. A rubber ring of radius r floats centrally on the water. The ceiling of the room is 2.0 m above the water surface. (a) Find the radius of the shadow of the ring formed on the ceiling if r = 15 cm. (b) Find the maximum value of r for which the shadow of the ring is formed on the ceiling. Refractive index of water = 4/3.


A paperweight in the form of a hemisphere of radius 3.0 cm is used to hold down a printed page. An observer looks at the page vertically through the paperweight. At what height above the page will the printed letters near the centre appear to the observer?


The diameter of the sun is 1.4 × 109 m and its distance from the earth is 1.5 × 1011 m. Find the radius of the image of the sun formed by a lens of focal length 20 cm.


Explain: ‘How is a rainbow formed’?


Answer the following question in detail.

Explain the formation of a primary rainbow. For which angular range with the horizontal is it visible?


Answer the following question in detail.

Explain the formation of a secondary rainbow. For which angular range with the horizontal is it visible?


Answer the following question in detail.

Is it possible to see primary and secondary rainbow simultaneously? Under what conditions?


A parallel beam of light of wavelength 5890 Å falls normally on a slit of width 0.2 mm. Find the distance between the first minima on the two sides of the central maximum of the diffraction pattern observed on a screen placed in the focal plane of a convex lens of focal length 50 cm. The lens is placed quite close to the slit.


Case study: Mirage in deserts 

To a distant observer, the light appears to be coming from somewhere below the ground. The observer naturally assumes that light is being reflected from the ground, say, by a pool of water near the tall object.

Such inverted images of distant tall objects cause an optical illusion to the observer. This phenomenon is called mirage. This type of mirage is especially common in hot deserts.

Based on the above facts, answer the following question:

Which of the following phenomena is prominently involved in the formation of mirage in deserts?


Case study: Mirage in deserts

To a distant observer, the light appears to be coming from somewhere below the ground. The observer naturally assumes that light is being reflected from the ground, say, by a pool of water near the tall object.

Such inverted images of distant tall objects cause an optical illusion to the observer. This phenomenon is called mirage. This type of mirage is especially common in hot deserts.

Based on the above facts, answer the following question:

The following figure shows a cross-section of a ‘light pipe’ made of a glass fiber of refractive index 1.68. The outer covering of the pipe is made of a material of refractive index 1.44. What is the range of the angles of the incident rays with the axis of the pipe for the following phenomena to occur.


Between the primary and secondary rainbows, there is a dark band known as Alexandar’s dark band. This is because ______.

  1. light scattered into this region interfere destructively.
  2. there is no light scattered into this region.
  3. light is absorbed in this region.
  4. angle made at the eye by the scattered rays with respect to the incident light of the sun lies between approximately 42° and 50°.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×