मराठी

A Factory Makes Tennis Rackets and Cricket Bats. in a Day, the Factory Has the Availability of Not More than 42 Hours of Machine Time and 24 Hours of Craftman'S Time. - Mathematics

Advertisements
Advertisements

प्रश्न

A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftman's time in its making while a cricket bat takes 3 hours of machine time and 1 hour of craftman's time. In a day, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftman's time.
(i) What number of rackets and bats must be made if the factory is to work at full capacity?
(ii) If the profit on a racket and on a bat is Rs 20 and Rs 10 respectively, find the maximum profit of the factory when it works at full capacity.

बेरीज

उत्तर

Let x number of tennis rackets and y number of cricket bats were sold.

Number of tennis rackets and cricket balls cannot be negative.

Therefore ,  \[x \geq 0, y \geq 0\]

It is given that a tennis racket takes 1.5 hours of machine time and 3 hours of craftman's time in its making while a cricket bat takes 3 hours of machine time and 1 hour of craftman's time.

Also, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftman's time. Therefore,
\[1 \cdot 5x + 3y \leq 42\]
\[3x + y \leq 24\]
If the profit on a racket and on a bat is Rs 20 and Rs 10 respectively.Therefore, profit made on tennis rackets and y cricket bats is Rs 20x and Rs 10y respectively.

Total profit = Z = 20x + 10y

The mathematical form of the given LPP is:

Maximize Z = 20x + 10y

Subject to constraints:

\[1 \cdot 5x + 3y \leq 42\]
\[3x + y \leq 24\]

\[x \geq 0, y \geq 0\]

First we will convert inequations into equations as follows:

1.5x + 3y = 42, 3x + y = 24, x = 0 and y = 0

Region represented by 1.5x + 3y  ≤ 42:
The line 1.5x + 3y = 42 meets the coordinate axes at A(28, 0) and B(0, 14) respectively. By joining these points we obtain the line 1.5x + 3y = 42. Clearly, (0, 0) satisfies the 1.5x + 3y = 42. So, the region which contains the origin represents the solution set of the inequation 1.5x + 3y  ≤ 42.

Region represented by 3x y ≤ 24:
The line 3x + y = 24 meets the coordinate axes at C(8, 0) and D(0, 24) respectively. By joining these points we obtain the line 3x + y = 24. Clearly, (0, 0) satisfies the inequation 3x y ≤ 24. So, the region which contains the origin represents the solution set of the inequation 3x y ≤ 24.

Region represented by ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations x ≥ 0, and y ≥ 0.

The feasible region determined by the system of constraints 1.5x + 3y  ≤ 42, 3x y ≤ 24, x ≥ 0 and y ≥ 0 are as follows.

In the above graph, the shaded region is the feasible region.

The corner points are O(0, 0), B(0, 14), E(4, 12), and C(8, 0).

The values of the objective function Z at corner points of the feasible region are given in the following table:
 

Corner Points

Z = 20x +10y

 
O(0, 0) 0  

B(0, 14)

140

 

E(4, 12)

200

← Maximum

C(8, 0)

160

 


Clearly, Z is maximum at x = 4 and y = 12 and the maximum value of Z at this point is 200.

(i) 4 tennis rackets and 12 cricket bats must be made if the factory is to work at full capacity.

(ii) The maximum profit of the factory when it works at full capacity is Rs 200.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Linear programming - Exercise 30.4 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 30 Linear programming
Exercise 30.4 | Q 44 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the following LPP by using graphical method.

Maximize : Z = 6x + 4y

Subject to x ≤ 2, x + y ≤  3, -2x + y ≤  1, x ≥  0, y ≥ 0.

Also find maximum value of Z.


A manufacturer produces two products A and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at Rs 7 profit and  B at a profit of Rs 4. Find the production level per day for maximum profit graphically.


A company manufactures bicycles and tricycles each of which must be processed through machines A and B. Machine A has maximum of 120 hours available and machine B has maximum of 180 hours available. Manufacturing a bicycle requires 6 hours on machine A and 3 hours on machine B. Manufacturing a tricycle requires 4 hours on machine A and 10 hours on machine B.
If profits are Rs. 180 for a bicycle and Rs. 220 for a tricycle, formulate and solve the L.P.P. to determine the number of bicycles and tricycles that should be manufactured in order to maximize the profit.


Solve the following LPP by graphical method:

Maximize: z = 3x + 5y
Subject to:  x + 4y ≤ 24
                  3x + y ≤ 21
                  x + y ≤ 9
                  x ≥ 0, y ≥ 0


Solve the following L. P. P. graphically:Linear Programming

Minimize Z = 6x + 2y

Subject to

5x + 9y ≤ 90

x + y ≥ 4

y ≤ 8

x ≥ 0, y ≥ 0


Solve the following L.P.P. graphically: 

Minimise Z = 5x + 10y

Subject to x + 2y ≤ 120

Constraints x + y ≥ 60

x – 2y ≥ 0 and x, y ≥ 0


A dietician wishes to mix two kinds ·of food X· and Y in such a way that the  mixture contains at least 10 units of vitamin A, 12 units of vitamin B arid 8 units of vitamin C. The vitamin contents of one kg food is given below:

Food Vitamin A Vitamin.B Vitamin C
X 1 unit 2 unit 3 unit
Y 2 unit 2 unit 1 unit

Orie kg of food X costs Rs 24 and one kg of food Y costs Rs 36. Using Linear Programming, find the least cost of the total mixture. which will contain the required vitamins.


Solve the following LPP graphically :
Maximise Z = 105x + 90y
subject to the constraints
x + y ≤ 50
2x + y ≤ 80
x ≥ 0, y ≥ 0.


Maximise z = 8x + 9y subject to the constraints given below :
2x + 3y ≤ 6
3x − 2y ≤6
y ≤ 1
xy ≥ 0


Maximize Z = 9x + 3y
Subject to 

\[2x + 3y \leq 13\]

\[ 3x + y \leq 5\]

\[ x, y \geq 0\]


Maximize Z = 3x + 4y
Subject to

\[2x + 2y \leq 80\]
\[2x + 4y \leq 120\]


Maximize Z = 3x + 3y, if possible,
Subject to the constraints

\[x - y \leq 1\]
\[x + y \geq 3\]
\[ x, y \geq 0\]


A diet of two foods F1 and F2 contains nutrients thiamine, phosphorous and iron. The amount of each nutrient in each of the food (in milligrams per 25 gms) is given in the following table:


Nutrients
Food
 
F1 F2
Thiamine 0.25 0.10

 
Phosphorous 0.75 1.50
Iron 1.60 0.80

The minimum requirement of the nutrients in the diet are 1.00 mg of thiamine, 7.50 mg of phosphorous and 10.00 mg of iron. The cost of F1 is 20 paise per 25 gms while the cost of F2 is 15 paise per 25 gms. Find the minimum cost of diet.


A manufacturer of Furniture makes two products : chairs and tables. processing of these products is done on two machines A and B. A chair requires 2 hrs on machine A and 6 hrs on machine B. A table requires 4 hrs on machine A and 2 hrs on machine B. There are 16 hrs of time per day available on machine A and 30 hrs on machine B. Profit gained by the manufacturer from a chair and a table is Rs 3 and Rs 5 respectively. Find with the help of graph what should be the daily production of each of the two products so as to maximize his profit.


A manufacturer produces two types of steel trunks. He has two machines A and B. For completing, the first types of the trunk requires 3 hours on machine A and 3 hours on machine B, whereas the second type of the trunk requires 3 hours on machine A and 2 hours on machine B. Machines A and B can work at most for 18 hours and 15 hours per day respectively. He earns a profit of Rs 30 and Rs 25 per trunk of the first type and the second type respectively. How many trunks of each type must he make each day to make maximum profit?


Anil wants to invest at most Rs 12000 in Saving Certificates and National Saving Bonds. According to rules, he has to invest at least Rs 2000 in Saving Certificates and at least Rs 4000 in National Saving Bonds. If the rate of interest on saving certificate is 8% per annum and the rate of interest on National Saving Bond is 10% per annum, how much money should he invest to earn maximum yearly income? Find also his maximum yearly income.


A producer has 30 and 17 units of labour and capital respectively which he can use to produce two type of goods x and y. To produce one unit of x, 2 units of labour and 3 units of capital are required. Similarly, 3 units of labour and 1 unit of capital is required to produce one unit of y. If x and y are priced at Rs 100 and Rs 120 per unit respectively, how should be producer use his resources to maximize the total revenue? Solve the problem graphically.


A box manufacturer makes large and small boxes from a large piece of cardboard. The large boxes require 4 sq. metre per box while the small boxes require 3 sq. metre per box. The manufacturer is required to make at least three large boxes and at least twice as many small boxes as large boxes. If 60 sq. metre of cardboard is in stock, and if the profits on the large and small boxes are Rs 3 and Rs 2 per box, how many of each should be made in order to maximize the total profit?


A small firm manufactures gold rings and chains. The total number of rings and chains manufactured per day is at most 24. It takes 1 hour to make a ring and 30 minutes to make a chain. The maximum number of hours available per day is 16. If the profit on a ring is Rs 300 and that on a chain is Rs 190, find the number of rings and chains that should be manufactured per day, so as to earn the maximum profit. Make it as an LPP and solve it graphically.


A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is Rs 100 and that on a bracelet is Rs 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit?
It is being given that at least one of each must be produced.


Tow godowns, A and B, have grain storage capacity of 100 quintals and 50 quintals respectively. They supply to 3 ration shops, DE and F, whose requirements are 60, 50 and 40 quintals respectively. The cost of transportation per quintal from the godowns to the shops are given in the following table:

  Transportation cost per quintal(in Rs.)
From-> A B
To
D 6.00 4.00
E 3.00 2.00
F 2.50 3.00

How should the supplies be transported in order that the transportation cost is minimum?


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of type A
require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours and 20 minutes available  for cutting and 4 hours available for assembling. The profit is Rs. 50 each for type A and Rs. 60 each  for type B souvenirs. How many souvenirs of each type should the company manufacture in order to  maximize profit? Formulate the above LPP and solve it graphically and also find the maximum profit. 


The minimum value of z = 10x + 25y subject to 0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≥ 5 is ______.


The maximum value of Z = 5x + 4y, Subject to y ≤ 2x, x ≤ 2y, x + y ≤ 3, x ≥ 0, y ≥ 0 is ______.


The maximum value of z = 3x + 10y subjected to the conditions 5x + 2y ≤ 10, 3x + 5y ≤ 15, x, y ≥ 0 is ______.


The constraints of an LPP are 7 ≤ x ≤ 12, 8 ≤ y ≤ 13. Determine the vertices of the feasible region formed by them.


The point which provides the solution to the linear programming problem: Max P = 2x + 3y subject to constraints: x ≥ 0, y ≥ 0, 2x + 2y ≤ 9, 2x + y ≤ 7, x + 2y ≤ 8, is ______ 


If 4x + 5y ≤ 20, x + y ≥ 3, x ≥ 0, y ≥ 0, maximum 2x + 3y is ______.


A feasible region in the set of points which satisfy ____________.


Let R be the feasible region for a linear programming problem, and let Z = ax + by be the objective function. If R is bounded, then ____________.


The maximum value of Z = 3x + 4y subjected to contraints x + y ≤ 40, x + 2y ≤ 60, x ≥ 0 and y ≥ 0 is ____________.


Which of the statements describe the solution set for `-2(x + 8) = - 2x + 20`?


The maximum value of z = 5x + 2y, subject to the constraints x + y ≤ 7, x + 2y ≤ 10, x, y ≥ 0 is ______.


The shaded part of given figure indicates in feasible region, then the constraints are:


The objective function Z = x1 + x2, subject to the constraints are x1 + x2 ≤ 10, – 2x1 + 3x2 ≤ 15, x1 ≤ 6, x1, x2 ≥ 0, has maximum value ______ of the feasible region.


Solve the following linear programming problem graphically:

Maximize: Z = x + 2y

Subject to constraints:

x + 2y ≥ 100,

2x – y ≤ 0

2x + y ≤ 200,

x ≥ 0, y ≥ 0.


Solve the following Linear Programming problem graphically:

Maximize: Z = 3x + 3.5y

Subject to constraints:

x + 2y ≥ 240,

3x + 1.5y ≥ 270,

1.5x + 2y ≤ 310,

x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problem graphically:

Minimize: Z = 60x + 80y

Subject to constraints:

3x + 4y ≥ 8

5x + 2y ≥ 11

x, y ≥ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×