मराठी

A Producer Has 30 and 17 Units of Labour and Capital Respectively Which He Can Use to Produce Two Type of Goods X and Y. - Mathematics

Advertisements
Advertisements

प्रश्न

A producer has 30 and 17 units of labour and capital respectively which he can use to produce two type of goods x and y. To produce one unit of x, 2 units of labour and 3 units of capital are required. Similarly, 3 units of labour and 1 unit of capital is required to produce one unit of y. If x and y are priced at Rs 100 and Rs 120 per unit respectively, how should be producer use his resources to maximize the total revenue? Solve the problem graphically.

बेरीज

उत्तर

Let \[x_1\] and \[y_1\] units of goods x and y were produced respectively.
Number of units of goods cannot be negative.
Therefore,\[x_1 , y_1 \geq 0\]
To produce one unit of x, 2 units of labour and for one unit of y, 3 units of labour are required \[2 x_1 + 3 y_1 \leq 30\]
To produce one unit of x, 3 units of capital is required and 1 unit of capital is required to produce one unit of 
 
\[3 x_1 + y_1 \leq 17\]

If x and y are priced at Rs 100 and Rs 120 per unit respectively, Therefore, cost of x1 and y1 units of goods x and y is Rs 100x1 and Rs 120y1 respectively.
Total revenue = Z = \[100 x_1 + 120 y_1\] which is to be maximised.

Thus, the mathematical formulat​ion of the given linear programmimg problem is 
Max Z =  \[100 x_1 + 120 y_1\]
subject to 
\[2 x_1 + 3 y_1 \leq 30\]
\[3 x_1 + y_1 \leq 17\]
\[x, y \geq 0\]

First we will convert inequations into equations as follows:
2x1 + 3y1 = 30, 3x1 + y1 = 17, x = 0 and y = 0

Region represented by 2x1 + 3y1 ≤ 30:
The line 2x1 + 3y1 = 30 meets the coordinate axes at A(15, 0) and B(0, 10) respectively. By joining these points we obtain the line
2x1 + 3y1 = 30. Clearly (0,0) satisfies the 2x1 + 3y1 = 30. So, the region which contains the origin represents the solution set of the inequation 2x1 + 3y1 ≤ 30.

Region represented by 3x1 + y1 ≤ 17:
The line 3x1 + y1 = 17 meets the coordinate axes at

\[C\left( \frac{17}{3}, 0 \right)\] and \[D\left( 0, 17 \right)\] respectively. By joining these points we obtain the line
3x1 + y1 = 17. Clearly (0,0) satisfies the inequation 3x1 + y1 ≤ 17. So,the region which contains the origin represents the solution set of the inequation 3x1 + y1 ≤ 17.

Region represented by x1 ≥ 0 and y1 ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations x ≥ 0, and y ≥ 0.
The feasible region determined by the system of constraints 2x1 + 3y1 ≤ 30, 3x1 + y1 ≤ 17, x ≥ 0 and y ≥ 0 are as follows.

The corner points are B(0, 10), E(3, 8)  and  \[C\left( \frac{17}{3}, 0 \right)\]

The values of Z at these corner points

orner point Z=  \[100 x_1 + 120 y_1\]
B 1200
E 1260
C
\[\frac{1700}{3}\]


The maximum value of Z is 1260 which is attained at E(3, 8).
Thus, the maximum revenue is Rs 1260 obtained when 3 units of x and 8 units of y were produced.are as follows

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Linear programming - Exercise 30.4 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 30 Linear programming
Exercise 30.4 | Q 27 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Minimize `z=4x+5y ` subject to `2x+y>=7, 2x+3y<=15, x<=3,x>=0, y>=0` solve using graphical method.


Maximise Z = x + 2y subject to the constraints

`x + 2y >= 100`

`2x - y <= 0`

`2x + y <= 200`

Solve the above LPP graphically


Solve the following L.P.P. graphically Maximise Z = 4x + y 

Subject to following constraints  x + y ≤ 50

3x + y ≤ 90,

x ≥ 10

x, y ≥ 0


Solve the following L.P.P graphically: Maximise Z = 20x + 10y

Subject to the following constraints x + 2y ≤ 28,

3x + y ≤ 24,

x ≥ 2,

 x, y ≥ 0


Solve the following LPP by graphical method:

Minimize Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0


Maximize Z = 5x + 3y
Subject to

\[3x + 5y \leq 15\]
\[5x + 2y \leq 10\]
\[ x, y \geq 0\]


Maximize Z = 10x + 6y
Subject to

\[3x + y \leq 12\]
\[2x + 5y \leq 34\]
\[ x, y \geq 0\]


Maximize Z = 3x + 4y
Subject to

\[2x + 2y \leq 80\]
\[2x + 4y \leq 120\]


Maximize Z = 4x + 3y
Subject to 

\[3x + 4y \leq 24\]
\[8x + 6y \leq 48\]
\[ x \leq 5\]
\[ y \leq 6\]
\[ x, y \geq 0\]


Maximize Z = 3x + 5y
Subject to

\[x + 2y \leq 20\]
\[x + y \leq 15\]
\[ y \leq 5\]
\[ x, y \geq 0\]


Maximize Z = 2x + 3y
Subject to

\[x + y \geq 1\]
\[10x + y \geq 5\]
\[x + 10y \geq 1\]
\[ x, y \geq 0\]


To maintain one's health, a person must fulfil certain minimum daily requirements for the following three nutrients: calcium, protein and calories. The diet consists of only items I and II whose prices and nutrient contents are shown below:

  Food I Food II Minimum daily requirement
Calcium
Protein
Calories
10
5
2
4
6
6
20
20
12
Price Rs 0.60 per unit Rs 1.00 per unit  

Find the combination of food items so that the cost may be minimum.


A hospital dietician wishes to find the cheapest combination of two foods, A and B, that contains at least 0.5 milligram of thiamin and at least 600 calories. Each unit of Acontains 0.12 milligram of thiamin and 100 calories, while each unit of B contains 0.10 milligram of thiamin and 150 calories. If each food costs 10 paise per unit, how many units of each should be combined at a minimum cost?


A publisher sells a hard cover edition of a text book for Rs 72.00 and paperback edition of the same ext for Rs 40.00. Costs to the publisher are Rs 56.00 and Rs 28.00 per book respectively in addition to weekly costs of Rs 9600.00. Both types require 5 minutes of printing time, although hardcover requires 10 minutes binding time and the paperback requires only 2 minutes. Both the printing and binding operations have 4,800 minutes available each week. How many of each type of book should be produced in order to maximize profit?


A company manufactures two types of toys A and B. Type A requires 5 minutes each for cutting and 10 minutes each for assembling. Type B requires 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours available for cutting and 4 hours available for assembling in a day. The profit is Rs 50 each on type A and Rs 60 each on type B. How many toys of each type should the company manufacture in a day to maximize the profit?


If a young man drives his vehicle at 25 km/hr, he has to spend ₹2 per km on petrol. If he drives it at a faster speed of 40 km/hr, the petrol cost increases to ₹5 per km. He has ₹100 to spend on petrol and travel within one hour. Express this as an LPP and solve the same.  


A merchant plans to sell two types of personal computers a desktop model and a portable model that will cost Rs 25,000 and Rs 40,000 respectively. He estimates that the total monthly demand of computers will not exceed 250 units. Determine the number of units of each type of computers which the merchant should stock to get maximum profit if he does not want to invest more than Rs 70 lakhs and his profit on the desktop model is Rs 4500 and on the portable model is Rs 5000. Make an LPP and solve it graphically.


A manufacturing company makes two models A and B of a product. Each piece of model A requires 9 labour hours for fabricating and 1 labour hour for finishing.  Each piece of model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available are 180 and 30 respectively. The company makes a profit of ₹8000 on each piece of model A and ₹12000 on each piece of model B. How many pieces of model A and model B should be manufactured per week to realise a maximum profit? What is the maximum profit per week?


An aeroplane can carry a maximum of 200 passengers. A profit of ₹1000 is made on each executive class ticket and a profit of ₹600 is made on each economy class ticket. The airline reserves atleast 20 seats for executive class. However, atleast 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximise the profit of the airline. What is the maximum profit?


A manufacturer considers that men and women workers are equally efficient and so he pays them at the same rate. He has 30 and 17 units of workers (male and female) and capital respectively, which he uses to produce two types of goods A and B. To produce one unit of A, 2 workers and 3 units of capital are required while 3 workers and 1 unit of capital is required to produce one unit of B. If A and B are priced at ₹100 and ₹120 per unit respectively, how should he use his resources to maximise the total revenue? Form the above as an LPP and solve graphically. Do you agree with this view of the manufacturer that men and women workers are equally efficient and so should be paid at the same rate?


A manufacturer produces two products and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at ₹7 profit and that of at a profit of ₹4. Find the production level per day for maximum profit graphically.


A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is Rs 100 and that on a bracelet is Rs 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit?
It is being given that at least one of each must be produced.


Tow godowns, A and B, have grain storage capacity of 100 quintals and 50 quintals respectively. They supply to 3 ration shops, DE and F, whose requirements are 60, 50 and 40 quintals respectively. The cost of transportation per quintal from the godowns to the shops are given in the following table:

  Transportation cost per quintal(in Rs.)
From-> A B
To
D 6.00 4.00
E 3.00 2.00
F 2.50 3.00

How should the supplies be transported in order that the transportation cost is minimum?


From the details given below, calculate the five-year moving averages of the number of students who have studied in a school. Also, plot these and original data on the same graph paper.

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Number of Students 332 317 357 392 402 405 410 427 405 438

For L.P.P. maximize z = 4x1 + 2x2 subject to 3x1 + 2x2 ≥ 9, x1 - x2 ≤ 3, x1 ≥ 0, x2 ≥ 0 has ______.


For the function z = 19x + 9y to be maximum under the constraints 2x + 3y ≤ 134, x + 5y ≤ 200, x ≥ 0, y ≥ 0; the values of x and y are ______.


The region XOY - plane which is represented by the inequalities -5 ≤ x ≤ 5, -5 ≤ y ≤ 5 is ______ 


The maximum value of z = 3x + 10y subjected to the conditions 5x + 2y ≤ 10, 3x + 5y ≤ 15, x, y ≥ 0 is ______.


The point which provides the solution to the linear programming problem: Max P = 2x + 3y subject to constraints: x ≥ 0, y ≥ 0, 2x + 2y ≤ 9, 2x + y ≤ 7, x + 2y ≤ 8, is ______ 


In linear programming feasible region (or solution region) for the problem is ____________.


Let R be the feasible region for a linear programming problem, and let Z = ax + by be the objective function. If R is bounded, then the objective function Z has both a maximum and a minimum value on R and ____________.


In Corner point method for solving a linear programming problem the first step is to ____________.


The shaded part of given figure indicates in feasible region, then the constraints are:


Solve the following linear programming problem graphically:

Minimize: Z = 5x + 10y

Subject to constraints:

x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x ≥ 0, y ≥ 0.


Find feasible solution for the following system of linear inequation graphically.

3x + 4y ≥ 12, 4x + 7y ≤ 28, x ≥ 0, y ≥ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×