Advertisements
Advertisements
प्रश्न
A hollow spherical body of inner and outer radii 6 cm and 8 cm respectively floats half-submerged in water. Find the density of the material of the sphere.
उत्तर
Given:
Inner radius of the hollow spherical body, r1 = 6 cm
Outer radius of the hollow spherical body, r2 = 8 cm
Let the density of the material of the sphere be ρ and the volume of the water displaced by the hollow sphere be V.
If `rho _w` is the density of water, then:
\[\text{Weight of the liquid displaced }= \left( \frac{\text{V}}{2} \right)( \rho_\text{w} ) \times \text{g}\]
\[\text{ We know }: \]
\[\text{ Upward thrust = Weight of the liquid displaced }\]
\[ \therefore \left( \frac{4}{3}\pi r_3^2 - \frac{4}{3}\pi r_1^3 \right)\rho = \left( \frac{1}{2} \right)\frac{4}{3}\pi r_2^3 \times \rho_\text{w} \]
\[ \Rightarrow \left( r_2^3 - r_1^3 \right) \times \rho = \left( \frac{1}{2} \right) r_2^3 \times 1\]
\[ \Rightarrow (8 )^3 - (6 )^3 \times \rho = \left( \frac{1}{2} \right)(8 )^3 \times 1\]
\[ \Rightarrow \rho = \frac{512}{2 \times (512 - 216)}\]
\[ = \frac{512}{2 \times 296}=0.865 \text{ gm/cc =865kg/m}^3\]
APPEARS IN
संबंधित प्रश्न
Water rises to a height 3.2 cm in a glass capillary tube. Find the height to which the same water will rise in another glass capillary having half area of cross section.
In a conical pendulum, a string of length 120 cm is fixed at rigid support and carries a mass
of 150 g at its free end. If the mass is revolved in a horizontal circle of radius 0.2 m around a
vertical axis, calculate tension in the string (g = 9.8 m/s2)
When a glass capillary tube is dipped at one end in water, water rises in the tube. The gravitational potential energy is thus increased. Is it a violation of conservation of energy?
The contact angle between a solid and a liquid is a property of
(a) the material of the solid
(b) the material of the liquid
(c) the shape of the solid
(d) the mass of the solid
A liquid is contained in a vertical tube of semicircular cross section. The contact angle is zero. The force of surface tension on the curved part and on the flat part are in ratio
When a capillary tube is dipped into a liquid, the liquid neither rises nor falls in the capillary.
(a) The surface tension of the liquid must be zero.
(b) The contact angle must be 90°.
(c) The surface tension may be zero.
(d) The contact angle may be 90°.
A capillary tube of radius 0.50 mm is dipped vertically in a pot of water. Find the difference between the pressure of the water in the tube 5.0 cm below the surface and the atmospheric pressure. Surface tension of water = 0.075 N m−1.
Define surface tension
What will be the shape of the liquid meniscus for the obtuse angle of contact?
Explain the phenomena of surface tension on the basis of molecular theory.
The property of _______ of a liquid surface enables the water droplets to move upward in plants.
How does surface tension help a plant?
How is surface tension related to surface energy?
Define the angle of contact for a given pair of solid and liquid.
A large number of liquid drops each of radius 'r' coalesce to form a big drop of radius 'R'. The energy released in the process in converted into kinetic energy of the big drop. The speed of the big drop is ______. (T = surface tension of liquid, p = density of liquid)
A water drop of radius R' splits into 'n' smaller drops, each of radius 'r'. The work done in the process is ______.
T = surface tension of water
The free surface of oil in a tanker, at rest, is horizontal. If the tanker starts accelerating the free surface will be titled by an angle θ. If the acceleration is a ms–2, what will be the slope of the free surface?
Two narrow bores of diameter 5.0 mm and 8.0 mm are joined together to form a U-shaped tube open at both ends. If this U-tube contains water, what is the difference in the level of the two limbs, of the tube?
[Take surface tension of water T = 7.3 × 10-2 Nm-1, angle of contact = 0, g = 10 ms-2 and density of water = 1.0 × 103 kgm-3]
In a U-tube, the radii of two columns are respectively r1 and r2. When a liquid of density ρ(θ = 0°) is filled in it, a level difference of h is observed on two arms, then the surface tension of the liquid is ______.
A drop of water of radius 8 mm breaks into number of droplets each of radius 1 mm. How many droplets will be formed?