मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Swimmer Wishes to Cross a 500 M Wide River Flowing at 5 Km/H. His Speed with Respect to Water is 3 Km/H. If He Heads in Direction Making an Angle θ with Flow, Find Time He Takes to Cross the River. - Physics

Advertisements
Advertisements

प्रश्न

A swimmer wishes to cross a 500 m wide river flowing at 5 km/h. His speed with respect to water is 3 km/h. If he heads in a direction making an angle θ with the flow, find the time he takes to cross the river.

बेरीज

उत्तर

Given:
Width of the river = 500 m
Rate of flow of the river = 5 km/h
Swimmer's speed with respect to water = 3 km/h
As per the question, the swimmer heads in a direction making an angle θ with the flow.
We know that the vertical component of velocity 3 sin θ takes him to the opposite side of the river.
Distance to be travelled = 0.5 km
Vertical component of velocity = 3 sin θ km/h
Thus, we have:

\[\text{ Time }= \frac{\text{ Distance } }{\text{ Velocity }} = \frac{0 . 5}{3\sin\theta} h = \frac{500 \times 6}{5\sin\theta} = \frac{600}{\sin\theta} s\]

∴ Required time =\[\frac{10 \text{ minutes } }{\sin\theta}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Rest and Motion: Kinematics - Exercise [पृष्ठ ५४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 3 Rest and Motion: Kinematics
Exercise | Q 47.1 | पृष्ठ ५४

संबंधित प्रश्‍न

A player throws a ball upwards with an initial speed of 29.4 m s–1.

  1. What is the direction of acceleration during the upward motion of the ball?
  2. What are the velocity and acceleration of the ball at the highest point of its motion?
  3. Choose the x = 0 m and t = 0 s to be the location and time of the ball at its highest point, vertically downward direction to be the positive direction of x-axis, and give the signs of position, velocity and acceleration of the ball during its upward and downward motion.
  4. To what height does the ball rise and after how long does the ball return to the player’s hands? (Take g = 9.8 m s–2 and neglect air resistance).

A ball is dropped from a height of 90 m on a floor. At each collision with the floor, the ball loses one tenth of its speed. Plot the speed-time graph of its motion between t = 0 to 12 s.


At which point on its path a projectile has the smallest speed?


A bullet travelling with a velocity of 16 m/s penetrates a tree trunk and comes to rest in 0.4 m. Find the time taken during the retardation.

 

A particle starting from rest moves with constant acceleration. If it takes 5.0 s to reach the speed 18.0 km/h find the distance travelled by the particle during this period.


A driver takes 0.20 s to apply the brakes after he sees a need for it. This is called the reaction time of the driver. If he is driving a car at a speed of 54 km/h and the brakes cause a deceleration of 6.0 m/s2, find the distance travelled by the car after he sees the need to put the brakes on.

 

A ball is projected vertically upward with a speed of 50 m/s. Find the speed at half the maximum height. Take g = 10 m/s2


A ball is dropped from a balloon going up at a speed of 7 m/s. If the balloon was at a height 60 m at the time of dropping the ball, how long will the ball take in reaching the ground?

 

A stone is thrown vertically upward with a speed of 28 m/s.Find its velocity one second before it reaches the maximum height.


A ball is dropped from a height. If it takes 0.200 s to cross the last 6.00 m before hitting the ground, find the height from which it was dropped. Take g = 10 m/s2.

 

A ball is dropped from a height of 5 m onto a sandy floor and penetrates the sand up to 10 cm before coming to rest. Find the retardation of the ball is sand assuming it to be uniform.


An elevator is descending with uniform acceleration. To measure the acceleration, a person in the elevator drops a coin at the moment the elevator starts. The coin is 6 ft above the floor of the elevator at the time it is dropped. The person observes that the coin strikes the floor in 1 second. Calculate from these data the acceleration of the elevator.


A ball is thrown horizontally from a point 100 m above the ground with a speed of 20 m/s. Find the velocity (direction and magnitude) with which it strikes the ground. 


A ball is thrown at a speed of 40 m/s at an angle of 60° with the horizontal. Find   the range of the ball. Take g = 10 m/s2


In the following figure shows a 11.7 ft wide ditch with the approach roads at an angle of 15° with the horizontal. With what minimum speed should a motorbike be moving on the road so that it safely crosses the ditch?

Assume that the length of the bike is 5 ft, and it leaves the road when the front part runs out of the approach road.


An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the direction in which the pilot should head the plane to reach the point B.   


It is a common observation that rain clouds can be at about a kilometre altitude above the ground.

  1. If a rain drop falls from such a height freely under gravity, what will be its speed? Also calculate in km/h. ( g = 10 m/s2)
  2. A typical rain drop is about 4mm diameter. Momentum is mass x speed in magnitude. Estimate its momentum when it hits ground.
  3. Estimate the time required to flatten the drop.
  4. Rate of change of momentum is force. Estimate how much force such a drop would exert on you.
  5. Estimate the order of magnitude force on umbrella. Typical lateral separation between two rain drops is 5 cm.

(Assume that umbrella is circular and has a diameter of 1 m and cloth is not pierced through !!)


A man is standing on top of a building 100 m high. He throws two balls vertically, one at t = 0 and other after a time interval (less than 2 seconds). The later ball is thrown at a velocity of half the first. The vertical gap between first and second ball is +15 m at t = 2 s. The gap is found to remain constant. Calculate the velocity with which the balls were thrown and the exact time interval between their throw.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×