English
Karnataka Board PUCPUC Science Class 11

A Swimmer Wishes to Cross a 500 M Wide River Flowing at 5 Km/H. His Speed with Respect to Water is 3 Km/H. If He Heads in Direction Making an Angle θ with Flow, Find Time He Takes to Cross the River. - Physics

Advertisements
Advertisements

Question

A swimmer wishes to cross a 500 m wide river flowing at 5 km/h. His speed with respect to water is 3 km/h. If he heads in a direction making an angle θ with the flow, find the time he takes to cross the river.

Sum

Solution

Given:
Width of the river = 500 m
Rate of flow of the river = 5 km/h
Swimmer's speed with respect to water = 3 km/h
As per the question, the swimmer heads in a direction making an angle θ with the flow.
We know that the vertical component of velocity 3 sin θ takes him to the opposite side of the river.
Distance to be travelled = 0.5 km
Vertical component of velocity = 3 sin θ km/h
Thus, we have:

\[\text{ Time }= \frac{\text{ Distance } }{\text{ Velocity }} = \frac{0 . 5}{3\sin\theta} h = \frac{500 \times 6}{5\sin\theta} = \frac{600}{\sin\theta} s\]

∴ Required time =\[\frac{10 \text{ minutes } }{\sin\theta}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Rest and Motion: Kinematics - Exercise [Page 54]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 3 Rest and Motion: Kinematics
Exercise | Q 47.1 | Page 54

RELATED QUESTIONS

The following figure gives the x-t plot of a particle executing one-dimensional simple harmonic motion. Give the signs of position, velocity and acceleration variables of the particle at t = 0.3 s, 1.2 s, – 1.2 s.


Two stones are thrown up simultaneously from the edge of a cliff 200 m high with initial speeds of 15 m/s and 30 m/s. Verify that the graph shown in Fig. 3.27 correctly represents the time variation of the relative position of the second stone with respect to the first. Neglect air resistance and assume that the stones do not rebound after hitting the ground. Take = 10 m/s2. Give the equations for the linear and curved parts of the plot.


At which point on its path a projectile has the smallest speed?


In a projectile motion the velocity 


A person travelling at 43.2 km/h applies the brake giving a deceleration of 6.0 m/s2 to his scooter. How far will it travel before stopping?

 

A particle starting from rest moves with constant acceleration. If it takes 5.0 s to reach the speed 18.0 km/h find the distance travelled by the particle during this period.


A ball is projected vertically upward with a speed of 50 m/s. Find the maximum height. 


A ball is dropped from a balloon going up at a speed of 7 m/s. If the balloon was at a height 60 m at the time of dropping the ball, how long will the ball take in reaching the ground?

 

A person sitting on the top of a tall building is dropping balls at regular intervals of one second. Find the positions of the 3rd, 4th and 5th ball when the 6th ball is being dropped.


A healthy youngman standing at a distance of 7 m from a 11.8 m high building sees a kid slipping from the top floor. With what speed (assumed uniform) should he run to catch the kid at the arms height (1.8 m)?


A ball is dropped from a height. If it takes 0.200 s to cross the last 6.00 m before hitting the ground, find the height from which it was dropped. Take g = 10 m/s2.

 

A ball is thrown at a speed of 40 m/s at an angle of 60° with the horizontal. Find   the range of the ball. Take g = 10 m/s2


A ball is projected from a point on the floor with a speed of 15 m/s at an angle of 60° with the horizontal. Will it hit a vertical wall 5 m away from the point of projection and perpendicular to the plane of projection without hitting the floor? Will the answer differ if the wall is 22 m away? 


A staircase contains three steps each 10 cm high and 20 cm wide (in the following figure). What should be the minimum horizontal velocity of a ball rolling of the uppermost plane so as to hit directly the lowest plane ? 


A person is standing on a truck moving with a constant velocity of 14.7 m/s on a horizontal road. The man throws a ball in such a way that it returns to the truck after the truck has moved 58.8 m. Find the speed and the angle of projection  as seen from the road. 


An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the direction in which the pilot should head the plane to reach the point B.   


A ball is dropped from a building of height 45 m. Simultaneously another ball is thrown up with a speed 40 m/s. Calculate the relative speed of the balls as a function of time.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×