English
Karnataka Board PUCPUC Science Class 11

A Healthy Youngman Standing at a Distance of 7 M from a 11.8 M High Building Sees a Kid Slipping from the Top Floor. with What Speed Should He Run to Catch the Kid at the Arms Height (1.8 M)? - Physics

Advertisements
Advertisements

Question

A healthy youngman standing at a distance of 7 m from a 11.8 m high building sees a kid slipping from the top floor. With what speed (assumed uniform) should he run to catch the kid at the arms height (1.8 m)?

Short Note

Solution

Given:
Height of the building = 11.8 m
Distance of the young man from the building = 7 m
The kid should be caught over 1.8 m from ground.
As the kid is slipping, his initial velocity u is 0.
Acceleration, a = 9.8 m/s2
Let s be the distance before which the kid has to be caught = 11.8 − 1.8 = 10 m
Using the equation of motion, we get:

\[s = ut + \frac{1}{2}a t^2\]

\[\Rightarrow 10 = 0 + \frac{1}{2} \times 9 . 8 \times t^2 \]

\[ \Rightarrow t^2 = \frac{10}{4 . 9} = 2 . 04\]

\[ \Rightarrow t = 1 . 42 s\]

This is the time in which the man should reach the bottom of the building to catch the kid.
Velocity with which the man should run:

\[\frac{s}{t} = \frac{7}{1 . 42} = 4 . 9 \text{ m } /s\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Rest and Motion: Kinematics - Exercise [Page 52]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 3 Rest and Motion: Kinematics
Exercise | Q 27 | Page 52

RELATED QUESTIONS

Two trains A and B of length 400 m each are moving on two parallel tracks with a uniform speed of 72 km h–1 in the same direction, with A ahead of B. The driver of B decides to overtake A and accelerates by 1 m/s2. If after 50 s, the guard of B just brushes past the driver of A, what was the original distance between them?


The following figure gives the x-t plot of a particle executing one-dimensional simple harmonic motion. Give the signs of position, velocity and acceleration variables of the particle at t = 0.3 s, 1.2 s, – 1.2 s.


A three-wheeler starts from rest, accelerates uniformly with 1 m s–2 on a straight road for 10 s, and then moves with uniform velocity. Plot the distance covered by the vehicle during the nth second (n = 1,2,3….) versus n. What do you expect this plot to be during accelerated motion: a straight line or a parabola?


A boy standing on a stationary lift (open from above) throws a ball upwards with the maximum initial speed he can, equal to 49 m/s. How much time does the ball take to return to his hands? If the lift starts moving up with a uniform speed of 5 m/s and the boy again throws the ball up with the maximum speed he can, how long does the ball take to return to his hands?


A train starts from rest and moves with a constant acceleration of 2.0 m/s2 for half a minute. The brakes are then applied and the train comes to rest in one minute. Find the position(s) of the train at half the maximum speed.


Complete the following table:

Car Model Driver X
Reaction time 0.20 s
Driver Y
Reaction time 0.30 s
A (deceleration on hard braking = 6.0 m/s2) Speed = 54 km/h
Braking distance
a = ............
Total stopping distance
b = ............
Speed = 72 km/h
Braking distance
= ...........
Total stopping distance
d = ............
B (deceleration on hard braking = 7.5 m/s2) Speed = 54 km/h
Breaking distance
e = ...........
Total stopping distance
f = ............
Speed 72 km/h
Braking distance
g = .............
Total stopping distance
h = ............

 


A car travelling at 60 km/h overtakes another car travelling at 42 km/h. Assuming each car to be 5.0 m long, find the time taken during the overtake and the total road distance used for the overtake.


A ball is dropped from a balloon going up at a speed of 7 m/s. If the balloon was at a height 60 m at the time of dropping the ball, how long will the ball take in reaching the ground?

 

A stone is thrown vertically upward with a speed of 28 m/s. Find the maximum height reached by the stone. 


A stone is thrown vertically upward with a speed of 28 m/s.Find its velocity one second before it reaches the maximum height.


A person sitting on the top of a tall building is dropping balls at regular intervals of one second. Find the positions of the 3rd, 4th and 5th ball when the 6th ball is being dropped.


A popular game in Indian villages is goli which is played with small glass balls called golis. The goli of one player is situated at a distance of 2.0 m from the goli of the second player. This second player has to project his goli by keeping the thumb of the left hand at the place of his goli, holding the goli between his two middle fingers and making the throw. If the projected goli hits the goli of the first player, the second player wins. If the height from which the goli is projected is 19.6 cm from the ground and the goli is to be projected horizontally, with what speed should it be projected so that it directly hits the stationery goli without falling on the ground earlier? 


A person is standing on a truck moving with a constant velocity of 14.7 m/s on a horizontal road. The man throws a ball in such a way that it returns to the truck after the truck has moved 58.8 m. Find the speed and the angle of projection  as seen from the road. 


A swimmer wishes to cross a 500 m wide river flowing at 5 km/h. His speed with respect to water is 3 km/h. If he heads in a direction making an angle θ with the flow, find the time he takes to cross the river.


A swimmer wishes to cross a 500 m wide river flowing at 5 km/h. His speed with respect to water is 3 km/h.  Find the shortest possible time to cross the river.


Two friends A and B are standing a distance x apart in an open field and wind is blowing from A to B. A beat a drum and B hears the sound t1 time after he sees the event. A and B interchange their positions and the experiment is repeated. This time B hears the drum timer after he sees the event. Calculate the velocity of sound in still air v and the velocity of wind u. Neglect the time light takes in travelling between the friends. 

 

Six particles situated at the corner of a regular hexagon of side a move at a constant speed v. Each particle maintains a direction towards the particle at the next corner. Calculate the time the particles will take to meet each other.  


A man is standing on top of a building 100 m high. He throws two balls vertically, one at t = 0 and other after a time interval (less than 2 seconds). The later ball is thrown at a velocity of half the first. The vertical gap between first and second ball is +15 m at t = 2 s. The gap is found to remain constant. Calculate the velocity with which the balls were thrown and the exact time interval between their throw.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×